
- •Электротехника
- •Электрические цепи постоянного тока
- •Электрическая цепь и ее элементы
- •Признаки классификации электрических цепей
- •Задачи анализа и расчета электрических цепей
- •1.1.4. Э.Д.С., напряжение, ток и их условные положительные Направления
- •1.1.5. Сопротивление проводников
- •1.1.6. Источники эл. Энергии и схемы их замещения
- •1.1.7. Основные законы электрических цепей.
- •Лекция №2
- •1.1.8. Эл. Энергия и мощность в цепях постоянного тока
- •1.1.9 Простые эл. Цепи с последовательным соединением приемников
- •Расчет схемы рис.1.21
- •1.1.13. Методы расчета электрических цепей постоянного тока а. Метод непосредственного применения законов Кирхгофа.
- •Б. Метод контурных токов.
- •В. Метод суперпозиции
- •Г. Метод узлового напряжения. Вывод расчетных соотношений.
- •Метод эквивалентного генератора.
- •Последовательность расчета методом эквивалентного генератора.
- •Лекция №3
- •1.1.14. Баланс мощности в цепях постоянного тока.
- •1.1.15.Способы соединения источников электрической энергии.
- •1.1.16. Условие передачи максимальной мощности источника во внешнюю цепь.
- •Лекция №4
- •1.2.1 Основные понятия о синусоидальном переменном токе.
- •2. Процесс заряда конденсатора от источника постоянного напряжения
- •1.2.3. Действующее значение синусоидальных эдс, тока и напряжения.
- •4. Методы описания и представления синусоидального тока, эдс и напряжения
- •1.2.9 Цепь синусоидального тока с реальной катушкой индуктивности
- •1.3.1. Последовательный колебательный контур. Резонанас напряжений.
- •1.4. Трансформаторы.
- •1.4.1 Назначение и принцип действия трансформатора.
- •1.4.2. Холостой ход трансформатора.
- •1.4.3. Нагрузка трансформатора.
- •1.4.4. Схема замещения трансформатора с нагрузкой.
- •1.4.5. Короткое замыкание трансформатора.
- •1.4.6. Внешняя характеристика трансформатора.
- •1.4.7. Потери мощности и кпд трансформатора.
- •2. Основы электроники
- •2.1 Полупроводники. Зонная теория.
- •На рис. 1.1. Представлена схема энергетических зон
- •2. Собственные полупроводниковые приборы.
- •Примесные поупроводники
- •Различают:
- •2.1.2 Электронно - дырочный переход (р - n переход).
- •2.1.2.1 Процессы в p- n переходе при отсутствии внешнего источника.
- •2.1.2.2 Прямое включение p – n перехода.
- •2.1.3 Виды полупроводниковых диодов.
- •Iобр.(Iо) – среднее значение
- •Фотодиоды
- •2.1.4 Транзисторы
- •2.1.4.1 Униполярные (полевые) транзисторы
- •2.1.4.2 Полевые транзисторыс управляющим p-n переходом
- •2.1.4.2 Мдп транзистора
- •2.1.5.2 Устройство и принцип действия транзистора.
- •Ik зависит от iб и не зависит от Uкэ
- •2.1.5.4 Дифференциальные параметры бт
- •2.1.5.5 Предельные параметры бт
- •2.1.5.6 Схема замещения бт с оэ
- •Лекция № 12
- •2.2.1 Усилительный каскад на бт с оэ.
- •2.2.1.1 Динамический режим работы бт.
- •Для определения Ки требуется определить h – параметры
- •2.2.1.2 Усилители кпу
- •Блок схема включения усилителя
- •А. Входные данные усилителя
- •2.2.1.3 Однокаскадные усилители на бт с оэ
- •2.2.2. Обратные связи в усилителе
- •Влияние ос на основные технические показатели усилителя
- •1.Уменьшает к в раз;
- •2. Стабилизирует коэффициент усиления при изменении параметров транзисторов, снижает уровень нелинейных искажений;
- •3. Последовательная оос увеличивает rвх, оос по u уменьшает rвых. Оос нашла преимущественное применение в усилителях
- •2.2.3 Усилители постоянного тока
- •При изменении знака Uвх должен измен. Знак Uвых
- •2 И 3 требование выполняется при работе усилителя в режиме а
- •1 Условие – необходимо отделить полезный сигнал от u питания.
- •1. Упт с одним источником питания
- •Дрейф нуля в упт
- •Борьба:
- •Стабилизация Uпит, стабилизация температуры режима работы, тренировка транзисторов.
- •Использование дифференциальных (балансных) упт.
- •Преобразование усиливаемого напряжения. Дифференциальный упт (балансный)
- •2.2.4 Операционные усилители.
- •Условное обозначение
- •2.2.4.2 Примеры схем на оу:
- •Инвертирующий усилитель
- •7. Дифференцирующий усилитель.
- •2.2.5 Генераторы гармонических колебаний(аг).
- •2 Условие – условие баланса амплитуд
- •3) Аг с кварцевой стабилизацией используют в качестве резонатора пластину кварца
- •Может быть использован как с или l. Можно включить в цепь пос как послед. Колебательный контур.
- •2.2.6 Выпрямители
- •2.2.6.1 Схема однополупериодного однофазного выпрямителя
- •2.2.6.1 Двухполупериодный выпрямитель мостового типа
- •2.2.6.3 Двухполупериодные выпрямители со средней точкой
- •2.2.6.4 Сглаживающие фильтры
- •2.2.6.5 Емкостные фильтры
- •2.2.6.6 Индуктивные фильтры
- •2.2.6.8 Стабилизаторы u и I
- •Промышленностью выпускается в интегральном исполнении -компенсационные стабилизаторы непрерывного действия серии к142
2.1.4.2 Мдп транзистора
Полевые транзисторы с изолированным затвором в отличии от вышерассмотренных имеют затвор, изолированный от области канала слоем диэлектрика (им может быть SiO2)
Принцип действия основан на эффектах изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля.
Приповерхностный слой полупроводников является токоведущим каналом этих транзисторов.
Выполн. Двух типов – со встр. индукц. кан.
2.1.4.3 МДП тр-ры со встроен. каналом
2.1.4.4
МДП тр-р с индуц. каналом
Значение
межэлектрод. емкостей Сзн1Сси<10пф
Сзс<2пф
Меньше,
чем у тр-ров с упр. n-p
пер. Применяется широко в интегр.
исполнении.
ЛЕКЦИЯ №11
2.1.5 Биполярные транзисторы
2.1.5.1 Структура, схемы включения, схемное обозначение
Биполярным транзистором называется трехэлектродный полупроводниковый прибор, содержащий два взаимодействующих p-n перехода, выходной ток которого управляется изменением входного тока.
Э – эмиттер (испускающий заряды)
К – коллектор (собирающий заряды)
Б – база
Эмиттерный переход – ЭП
Коллекторный переход – КП
Различают три схемы включения биполярного транзистора:
а) с общей базой
б) с общим эмиттером
в) с общим коллектором
а) Самая распространенная – обеспечивает усиление по U и I
б) Усиливает только по U
в) Усиливает только I
Токи транзистора связаны равенством Iэ=IБ+Iк
2.1.5.2 Устройство и принцип действия транзистора.
Основные уравнения токов транзистора
Рассмотрим принцип действия биполярного транзистора на примере схемы ОЭ
Биполярные транзисторы функционируют при следующих начальных условиях:
ширина базы меньше длины свободного пробега неосновных носителей заряда (ННЗ)
концентрация примесей в Э и К значительно больше, чем в базе (база легируется слабо)
на ЭП подается прямое напряжение
на КП подается обратное напряжение
UКЭ>>UБЭ
В данном случае непосредственно к КП источник не подключен, но, так как UКБ=UКЭ-UБЭ и UБЭ<<UКЭ, UКБ имеют ту же полярность, что и UКЭ, то есть обратную к КП. На ЭП подано прямое U и электроны инжектируют из Э в Б (инжекцией дырок из Б в Э пренебрегаем ввиду их малой концентрации).
Пусть m-число электронов, инжектированных в базу. Так как ширина базы меньше длины свободного пробега носителей заряда, большинство электронов достигают КП и пересекая его, в результате экстракции попадают в К (действующее в районе КП поле является ускоряющим для ННЗ, которыми являются электроны в базе.
Пусть αm – число электронов, экстрактированных в коллектор
α- коэффициент передачи тока эмиттера α=0,9-0,99 тогда (1-α)m – число электронов, рекомбинировавших с дырками базы.
Из Э уходят электроны, создавая ток IЭ.
Из К во внешнюю цепь уходят электроны, создавая ток IK.
Из базы во внешнюю цепь уходят электроны, освобождающиеся в процессе рекомбинации, создавая ток IБ.
Согласно первому закону Кирхгофа:
IЭ=IK+IБ
m=mα+(1-α)m кроме этого необходимо учесть обратный ток коллекторного перехода IКБО, образованный движением ННЗ через КП, совпадающий по направлению с IК и направленный навстречу IБ, следовательно
IK=αIЭ+IКБО
IБ=(1-α)IЭ-IКБО
IЭ=IК+IБ
В схеме ОЭ вход – IБ, а для выходного управляемого IK необходимо получить уравнение в виде IK=f(IБ)
IK=αIЭ+IКБО=α(IK+IБ)+IКБО
α 1
IK = IБ+ IБКО
1-α 1-α
1
=β – коэффициент передачи тока базы = 10÷1000
1-α
1
=1+β
1-α
IK=βIБ+(1+β)IКБО
βIБ- управляемая составляющая коллекторного тока, показывающая что изменение малого IБ вызывает в β раз больше изменение Ik.
Биполярный транзистор сам по себе не усиливает мощность, а лишь регулирует отдачу мощности от источника коллекторного напряжения Uкэ.
2.1.5.3 ВАХ БТ
Икэ = 5

IБ=f(UБЭ)
ИКЭ=С
Семейство входных характеристик для БТ с ОЭ.
Увеличение Uкэ смещает ВАХ в область малых токов, так как увеличивается ширина КП за счет базы, ширина базы уменьшается, вероятность рекомбинации ОНЗ в базе уменьшается. IБ – уменьшается. Это явление называется «модуляцией ширины базы».
IБ”’
IБ”
IБ’
IБ=0
IКБО
Семейство выходных характеристик для БТ с ОЭ.
IБ’”>IБ”>IБ’
I-обл. отсечки
Ik=βIБ+(1+β)IКБО
при IБ=0, Ik=(1+β)IКБО
при IБ=-IКБО, Ikmin=IКБО
транзистор заперт. UКБ- обр
UБЭ-обр
II – область насыщения Ik зависит от Uкэ и практически не зависит от IБ
UБЭ – прямое
UКЭ – прямое
UКЭ<UБЭ
III- активный, рабочий режим