- •Электротехника
- •Электрические цепи постоянного тока
- •Электрическая цепь и ее элементы
- •Признаки классификации электрических цепей
- •Задачи анализа и расчета электрических цепей
- •1.1.4. Э.Д.С., напряжение, ток и их условные положительные Направления
- •1.1.5. Сопротивление проводников
- •1.1.6. Источники эл. Энергии и схемы их замещения
- •1.1.7. Основные законы электрических цепей.
- •Лекция №2
- •1.1.8. Эл. Энергия и мощность в цепях постоянного тока
- •1.1.9 Простые эл. Цепи с последовательным соединением приемников
- •Расчет схемы рис.1.21
- •1.1.13. Методы расчета электрических цепей постоянного тока а. Метод непосредственного применения законов Кирхгофа.
- •Б. Метод контурных токов.
- •В. Метод суперпозиции
- •Г. Метод узлового напряжения. Вывод расчетных соотношений.
- •Метод эквивалентного генератора.
- •Последовательность расчета методом эквивалентного генератора.
- •Лекция №3
- •1.1.14. Баланс мощности в цепях постоянного тока.
- •1.1.15.Способы соединения источников электрической энергии.
- •1.1.16. Условие передачи максимальной мощности источника во внешнюю цепь.
- •Лекция №4
- •1.2.1 Основные понятия о синусоидальном переменном токе.
- •2. Процесс заряда конденсатора от источника постоянного напряжения
- •1.2.3. Действующее значение синусоидальных эдс, тока и напряжения.
- •4. Методы описания и представления синусоидального тока, эдс и напряжения
- •1.2.9 Цепь синусоидального тока с реальной катушкой индуктивности
- •1.3.1. Последовательный колебательный контур. Резонанас напряжений.
- •1.4. Трансформаторы.
- •1.4.1 Назначение и принцип действия трансформатора.
- •1.4.2. Холостой ход трансформатора.
- •1.4.3. Нагрузка трансформатора.
- •1.4.4. Схема замещения трансформатора с нагрузкой.
- •1.4.5. Короткое замыкание трансформатора.
- •1.4.6. Внешняя характеристика трансформатора.
- •1.4.7. Потери мощности и кпд трансформатора.
- •2. Основы электроники
- •2.1 Полупроводники. Зонная теория.
- •На рис. 1.1. Представлена схема энергетических зон
- •2. Собственные полупроводниковые приборы.
- •Примесные поупроводники
- •Различают:
- •2.1.2 Электронно - дырочный переход (р - n переход).
- •2.1.2.1 Процессы в p- n переходе при отсутствии внешнего источника.
- •2.1.2.2 Прямое включение p – n перехода.
- •2.1.3 Виды полупроводниковых диодов.
- •Iобр.(Iо) – среднее значение
- •Фотодиоды
- •2.1.4 Транзисторы
- •2.1.4.1 Униполярные (полевые) транзисторы
- •2.1.4.2 Полевые транзисторыс управляющим p-n переходом
- •2.1.4.2 Мдп транзистора
- •2.1.5.2 Устройство и принцип действия транзистора.
- •Ik зависит от iб и не зависит от Uкэ
- •2.1.5.4 Дифференциальные параметры бт
- •2.1.5.5 Предельные параметры бт
- •2.1.5.6 Схема замещения бт с оэ
- •Лекция № 12
- •2.2.1 Усилительный каскад на бт с оэ.
- •2.2.1.1 Динамический режим работы бт.
- •Для определения Ки требуется определить h – параметры
- •2.2.1.2 Усилители кпу
- •Блок схема включения усилителя
- •А. Входные данные усилителя
- •2.2.1.3 Однокаскадные усилители на бт с оэ
- •2.2.2. Обратные связи в усилителе
- •Влияние ос на основные технические показатели усилителя
- •1.Уменьшает к в раз;
- •2. Стабилизирует коэффициент усиления при изменении параметров транзисторов, снижает уровень нелинейных искажений;
- •3. Последовательная оос увеличивает rвх, оос по u уменьшает rвых. Оос нашла преимущественное применение в усилителях
- •2.2.3 Усилители постоянного тока
- •При изменении знака Uвх должен измен. Знак Uвых
- •2 И 3 требование выполняется при работе усилителя в режиме а
- •1 Условие – необходимо отделить полезный сигнал от u питания.
- •1. Упт с одним источником питания
- •Дрейф нуля в упт
- •Борьба:
- •Стабилизация Uпит, стабилизация температуры режима работы, тренировка транзисторов.
- •Использование дифференциальных (балансных) упт.
- •Преобразование усиливаемого напряжения. Дифференциальный упт (балансный)
- •2.2.4 Операционные усилители.
- •Условное обозначение
- •2.2.4.2 Примеры схем на оу:
- •Инвертирующий усилитель
- •7. Дифференцирующий усилитель.
- •2.2.5 Генераторы гармонических колебаний(аг).
- •2 Условие – условие баланса амплитуд
- •3) Аг с кварцевой стабилизацией используют в качестве резонатора пластину кварца
- •Может быть использован как с или l. Можно включить в цепь пос как послед. Колебательный контур.
- •2.2.6 Выпрямители
- •2.2.6.1 Схема однополупериодного однофазного выпрямителя
- •2.2.6.1 Двухполупериодный выпрямитель мостового типа
- •2.2.6.3 Двухполупериодные выпрямители со средней точкой
- •2.2.6.4 Сглаживающие фильтры
- •2.2.6.5 Емкостные фильтры
- •2.2.6.6 Индуктивные фильтры
- •2.2.6.8 Стабилизаторы u и I
- •Промышленностью выпускается в интегральном исполнении -компенсационные стабилизаторы непрерывного действия серии к142
Задачи анализа и расчета электрических цепей
Определение токов, напряжений и мощности различных участков цепи при заданных параметрах источников и приемников эл. энергии.
Вычисление параметров источников и приемников эл. энергии при заданных токах и напряжениях по участкам цепи.
Видоизменение (упрощение) разветвленной эл. цепи с целью определения ее сопротивления путем последовательного свертывания, преобразования треугольника сопротивлений в эквивалентную звезду и т.д
Преобразование цепи путем замены части ее эквивалентным активным двухполюсником.
1.1.4. Э.Д.С., напряжение, ток и их условные положительные Направления
Рис.1.7
Схема, иллюстрирующая положительные
направления э.д.с., тока и напряжения в
цепи.
В источнике эл. энергии существует силовое поле, под действием которого внутри него заряды перемещаются. В результате этого у зажима «+» образуется избыток положительных зарядов, а у зажима «-» - избыток отрицательных зарядов.
Силовое поле источника имеет не электростатическое происхождение и поэтому наз. сторонним. (в генераторах постоянного тока оно вызвано эл.-магн. индукцией, в гальванических источниках и аккумуляторах – хим. реакциями ).
В результате разделения зарядов внутри источников возникает эл. поле, действующее на заряды в противоположном направлении по сравнению с силами стороннего поля.
Если внешняя цепь не замкнута, электрическое поле уравновешивается сторонним и движение зарядов внутри источника прекращается.
При наличии внешней замкнутой цепи в ней под действием сил эл. поля начинается движение эл. зарядов, т.е. возникает эл. ток. В результате частичной нейтрализации зарядов у электродов силы эл. поля внутри источника становится меньше сил стороннего поля, что приводит к дальнейшему разделению зарядов в источнике.
Стороннее поле источника между его зажимами оценивается э.д.с. Е, равной работе, совершаемой силами стороннего поля при перемещение единичного положительного заряда от одного зажима к другому.
где А – работа, q- заряд
Условное положительное направление э.д.с. – от отрицательного зажима к положительному (рис.1.7). Степень противодействия движению зарядов внутри источника оценивается его внутренним сопротивлением Ri.
Под
действием источника в цепи возникает
эл. поле с напряженностью
[В/м].
Вектор напряженности эл. поля ( силовые
линии поля) направлен от положительного
полюса к отрицательному. Положительные
заряды перемещаются по направлению
силовых линий поля, а отрицательные –
навстречу им.
Эл. поле между двумя точками цепи ( например, между а и в рис 1.7) характеризуется напряжением, или разностью потенциалов
Uав - напряжение между т. а и в;
-
потенциал точек а,в
Напряжение Uав численно равно работе, совершаемой силами электрического поля при перемещении единичного положительного заряда из точки а в точку в
Потенциал численного равен работе, совершаемой силами эл. поля при перемещение единичного заряда из рассматриваемой точки поля в точку. Потенциал принят равным нулю (потенциал Земли).
Таким образом, э.д.с., напряжение и потенциал выражаются в вольтах. Один вольт – это такое напряжение (ЭДС, потенциал), когда при перемещении заряда, равного 1 Кл, совершается работа, равная 1 Дж.
Напряжение также может быть определено как
где
- модуль вектора напряжености эл. поля;
– приращение
линейного расстояния
При
=const,
U=
Положительным наз. направление напряжения, в котором положительный заряд перемещался бы под действием сил эл. поля от большего потенциала к меньшему, от «+» к «-» (рис .1.7)
Электрический
ток
в проходящих средах есть направленное
движение носителей заряда: в металлах
– электронов, в полупроводниках –
электронов и дырок, в электролитах –
положительных и отрицательных ионов.
Значение (сила) тока это количество электричества (т.е. положительных и отрицательных зарядов) прошедшего через поперечное сечение проводника в единицу времени
За
единицу силы тока принят 1А – это ток,
при котором за 1с через поперечное
сечение проводника проходит 1Кл эл.
зарядов (
электронов).
За положительное направление тока в электротехнике принято направление движения положительных зарядов.
Во внешней цепи ( в приемники) положительные направления тока и напряжения совпадают ( положительные заряды движутся от большего потенциала к меньшему) на участке, содержащем источник, движение зарядов происходит под действием стороннего поля от « - » к « + » и здесь положит. направление тока совпадает с положит. направлением ЭДС и противоположно положительному направлению напряжения.
Следовательно, Е и U всегда имеют противоположные направления.
