
- •Электротехника
- •Электрические цепи постоянного тока
- •Электрическая цепь и ее элементы
- •Признаки классификации электрических цепей
- •Задачи анализа и расчета электрических цепей
- •1.1.4. Э.Д.С., напряжение, ток и их условные положительные Направления
- •1.1.5. Сопротивление проводников
- •1.1.6. Источники эл. Энергии и схемы их замещения
- •1.1.7. Основные законы электрических цепей.
- •Лекция №2
- •1.1.8. Эл. Энергия и мощность в цепях постоянного тока
- •1.1.9 Простые эл. Цепи с последовательным соединением приемников
- •Расчет схемы рис.1.21
- •1.1.13. Методы расчета электрических цепей постоянного тока а. Метод непосредственного применения законов Кирхгофа.
- •Б. Метод контурных токов.
- •В. Метод суперпозиции
- •Г. Метод узлового напряжения. Вывод расчетных соотношений.
- •Метод эквивалентного генератора.
- •Последовательность расчета методом эквивалентного генератора.
- •Лекция №3
- •1.1.14. Баланс мощности в цепях постоянного тока.
- •1.1.15.Способы соединения источников электрической энергии.
- •1.1.16. Условие передачи максимальной мощности источника во внешнюю цепь.
- •Лекция №4
- •1.2.1 Основные понятия о синусоидальном переменном токе.
- •2. Процесс заряда конденсатора от источника постоянного напряжения
- •1.2.3. Действующее значение синусоидальных эдс, тока и напряжения.
- •4. Методы описания и представления синусоидального тока, эдс и напряжения
- •1.2.9 Цепь синусоидального тока с реальной катушкой индуктивности
- •1.3.1. Последовательный колебательный контур. Резонанас напряжений.
- •1.4. Трансформаторы.
- •1.4.1 Назначение и принцип действия трансформатора.
- •1.4.2. Холостой ход трансформатора.
- •1.4.3. Нагрузка трансформатора.
- •1.4.4. Схема замещения трансформатора с нагрузкой.
- •1.4.5. Короткое замыкание трансформатора.
- •1.4.6. Внешняя характеристика трансформатора.
- •1.4.7. Потери мощности и кпд трансформатора.
- •2. Основы электроники
- •2.1 Полупроводники. Зонная теория.
- •На рис. 1.1. Представлена схема энергетических зон
- •2. Собственные полупроводниковые приборы.
- •Примесные поупроводники
- •Различают:
- •2.1.2 Электронно - дырочный переход (р - n переход).
- •2.1.2.1 Процессы в p- n переходе при отсутствии внешнего источника.
- •2.1.2.2 Прямое включение p – n перехода.
- •2.1.3 Виды полупроводниковых диодов.
- •Iобр.(Iо) – среднее значение
- •Фотодиоды
- •2.1.4 Транзисторы
- •2.1.4.1 Униполярные (полевые) транзисторы
- •2.1.4.2 Полевые транзисторыс управляющим p-n переходом
- •2.1.4.2 Мдп транзистора
- •2.1.5.2 Устройство и принцип действия транзистора.
- •Ik зависит от iб и не зависит от Uкэ
- •2.1.5.4 Дифференциальные параметры бт
- •2.1.5.5 Предельные параметры бт
- •2.1.5.6 Схема замещения бт с оэ
- •Лекция № 12
- •2.2.1 Усилительный каскад на бт с оэ.
- •2.2.1.1 Динамический режим работы бт.
- •Для определения Ки требуется определить h – параметры
- •2.2.1.2 Усилители кпу
- •Блок схема включения усилителя
- •А. Входные данные усилителя
- •2.2.1.3 Однокаскадные усилители на бт с оэ
- •2.2.2. Обратные связи в усилителе
- •Влияние ос на основные технические показатели усилителя
- •1.Уменьшает к в раз;
- •2. Стабилизирует коэффициент усиления при изменении параметров транзисторов, снижает уровень нелинейных искажений;
- •3. Последовательная оос увеличивает rвх, оос по u уменьшает rвых. Оос нашла преимущественное применение в усилителях
- •2.2.3 Усилители постоянного тока
- •При изменении знака Uвх должен измен. Знак Uвых
- •2 И 3 требование выполняется при работе усилителя в режиме а
- •1 Условие – необходимо отделить полезный сигнал от u питания.
- •1. Упт с одним источником питания
- •Дрейф нуля в упт
- •Борьба:
- •Стабилизация Uпит, стабилизация температуры режима работы, тренировка транзисторов.
- •Использование дифференциальных (балансных) упт.
- •Преобразование усиливаемого напряжения. Дифференциальный упт (балансный)
- •2.2.4 Операционные усилители.
- •Условное обозначение
- •2.2.4.2 Примеры схем на оу:
- •Инвертирующий усилитель
- •7. Дифференцирующий усилитель.
- •2.2.5 Генераторы гармонических колебаний(аг).
- •2 Условие – условие баланса амплитуд
- •3) Аг с кварцевой стабилизацией используют в качестве резонатора пластину кварца
- •Может быть использован как с или l. Можно включить в цепь пос как послед. Колебательный контур.
- •2.2.6 Выпрямители
- •2.2.6.1 Схема однополупериодного однофазного выпрямителя
- •2.2.6.1 Двухполупериодный выпрямитель мостового типа
- •2.2.6.3 Двухполупериодные выпрямители со средней точкой
- •2.2.6.4 Сглаживающие фильтры
- •2.2.6.5 Емкостные фильтры
- •2.2.6.6 Индуктивные фильтры
- •2.2.6.8 Стабилизаторы u и I
- •Промышленностью выпускается в интегральном исполнении -компенсационные стабилизаторы непрерывного действия серии к142
2.1.2 Электронно - дырочный переход (р - n переход).
2.1.2.1 Процессы в p- n переходе при отсутствии внешнего источника.
(изолированный p- n переход)
Электронно – дырочным или p – n переходом называют область на границе полупроводника с различным типом проводимости.
Его получают вплавлением или диффузией соответствующих примесей в монокристаллы полупроводника.
Рассмотрим процессы в изолированном p – n переходе при одинаковой концентрации дырок и элементов в p и n областях:
эпюра напряжений
а) вследствие наличия градиента концентрации носителей зарядов начинается встречное движение электронов и дырок. диффузионный ток ОНЗ – jдиф. ОНЗ.
б) электроны и дырки, переходя в соседние области рекомбинируют – концентрация основных носителей в пограничных областях снижается, т.е. на границе полупроводника с различным телом проводимости образуется
слой, бедный ОНЗ и близкий по проводимости к диэлектрику. б – изолирующий слой (запирающий).
в) по краям изолированного слоя в области n сосредотачиваются положительно заряженные ионы донорной примеси (неподвижные узлы кристаллической решётки – атомы, получившие положительную ионизацию, а в области p – отрицательно заряженные ионы акцепторной примеси(атомы присоединившие элементы)).
г) между противоположными зарядами возникает внутреннее электрическое поле Евнутр., силовые линии которого направлены из n к p.
д) Евнутр препятствует диффузионному движению ОНЗ. jдиф. снижается.
е) Евнутр способствует движению через p – n переход
ННЗ дрейфовый ток ННЗ ^ ; jдрейф ^ - направление ротивоположное jдиф
ж) Поскольку в изолированном полупроводнике плотность тока = 0 – наступает динамическое равновесие: jдиф.онз – jдрейф.онз = 0
з) в p-n переходе устанавливается контактная разность потенциалов (потенциальный барьер). Uконт ,которая определяется концентрацией примесей в n и p областях, чем > Uконт, тем более широкую полосу по кидают ОНЗ на границе.
2.1.2.2 Прямое включение p – n перехода.
противоположно Eвнутр
а)контурная разность потенциалов снижается : Uрез=Uконт –Uпр ; и результ. поле в переходе снижается Ерез= Eвнутр – Eвнеш .
б)в результате ослабления результ. поля ОНЗ приближ. к р-п переходу, концентр. И градиент концентр.. растёт.
в)ширина изолированного слоя б уменьшается
г)возрастает Iдиф. и Iпрямой. Переход ОНЗ через потенциальный барьер в ту сторону, где он становится ННЗ называется инжекцией.
д)Iдрейф. по сравнению с Iдиф.ничтожно малое.
2.1.2.3 Обратное включение р-п перехода.
а)Пот. барьер и рез. поле увеличиваются:
Uрез=Uвн+Uвнутр; Ерез=Евн+Евнутр
б)ОНЗ отодвигается от р-п перехода а ННЗ приближается.
в) б увеличивается
г)диффузионный ток ОНЗ прекращается.
д)под действием Ерез. возникает дрейфовый ток ННЗ через р-п переход и обратный ток Iобр во внеш.цепи. Так как конц. ОНЗ в 10 раз выше ННЗ, то Iобр<<Inp.
2.1.2.4 Вольт – амперная характеристика р-п перехода.
Характеристика идеального р-п перехода:
I=I0 (eeU/kT - 1)
I0- обратный ток р-п перехода
е – основание натурального логарифма
U – напряжение, приложенное к р-п переходу
е – заряд электрона
к – постоянная Больцмана
Т – абсолютная температура
Прямая ветвь: Inp= I0e40U для Т=300 К
Обратная ветвь: Iобр= -Io.
При достижении Uобр определяем U, р-п переход пробивается. - 2 вида пробоя : 1)электронный ; 2)тепловой
1. электронный пробой – лавинообразное увеличение обратного тока вследствие ударной ионизации атомов кристаллической решётки быстрыми носителями заряда и отрывом валентных элементов. – образуется пара электрон – дырка, процесс происходит лавинообразно. Обратим: Если не обеспечен теплоотвод, электронный пробой может перейти в тепловой (необратимый) - интенсивная термогенерация носителей заряда:
при t°≥100-150 с и t°≤-60-70c р-п переход теряет свои свойства.
Т.о. ВАХ р-п перехода позволяет рассмотреть его, как нелинейный элемент, сопротивление которого резко изменяется в зависимости от направления и величины приложенного U. т.е.р-п переход обладает свойством односторонней проводимости.