Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OSNOVY_ELEKTROTEKhNIKI_I_ELEKTRONIKI_russk.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
11.62 Mб
Скачать

На рис. 1.1. Представлена схема энергетических зон

– разрешенные зоны

W , W1 – запрещенные зоны

Рисунок 1.1.

По оси ординат отложены величины энергии электронов, по оси абсцисс расстояние X в направлении толщины кристалла. Ширина верхней запрещенной зоны W равна разности энергий между нижним уровнем (дном) зоны проводимости Wпр. и верхним уровнем (потолком) валентной зоны Wв. W = Wпр – Wв.

В металлах, где все валентные электроны являются электронами проводимости, запрещенная зона отсутствует, и валентная зона частично перекрывается с зоной проводимости.

W

При W < 3 эВ твердое тело принято считать полупроводником.

При W > 3 эВ твердое тело принято считать диэлектриком.

Полупроводник приобретает проводимость в том случае, если электронам, находящимся на энергетических уровнях внутри валентной зоны, внешним воздействием (нагреванием, освещением) сообщается энергия (равная или больше W), достаточная для перехода электронов из валентной зоны в зону проводимости.

Электрон, находящийся в зоне проводимости и являющийся подвижным носителем заряда, называется электроном – проводимости.

Одновременно в валентной зоне из-за ухода электрона появляются свободные уровни и, следовательно, валентные электроны тоже получают возможность переходить с одних уровней на другие (свободные) и тем самым изменять энергию. Валентные электроны, как и электроны проводимости, могут создавать ток через полупроводник.

При уходе валентного электрона образуется положительный заряд, равный по абсолютной величине заряду электрона; этот положительный заряд следует относить к валентной связи между двумя атомами, нарушенной уходом валентного электрона.

Незанятое электроном энергетическое состояние в валентной зоне, обладающее положительным зарядом, называется дыркой.

При создании электронного поля в полупроводнике валентные электроны переходят из заполненных связей в соседние незанятые связи в направлении увеличения потенциала поля, что эквивалентно перемещению дырок в обратном направлении.

Итак – в полупроводниковых приборах возможны 2 вида электропроводимости – электронная (в результате перемещения электронов проводимости) и дырочная (в результате перемещения дырок).

Полупроводники представляют собой вещества, которые по удельной электропроводимости 10-6 – 10-8 1/Ом . см являются промежутожными между проводниками и диэлектриками. Их удельная проводимость сильно зависит от t и концентрации примесей и внешних воздействий света, электрического поля.

По составу полупроводники делятся на простые – образованными атомами одного химического элемента – германий Ge, кремний Si, селен Se и сложные – химические соединения или сплав двух или нескольких химических элементов – антимонид индия InSb, арсенид галлия GaAs.

По типу электронной проводимости различают собственные полупроводники (полупроводники i-типа), если их электронная проводимость обусловлена генерацией пар – электрон-дырка, и примесные полупроводники с электронной проводимостью – n-типа, если их электропроводимость обусловлена перемещением электронов, появившихся в результате ионизации атомов донорной примеси (отдающей электроны) и примесные полупроводники c дырочной проводимостью p-типа, если их проводимость обусловлена в основном перемещением дырок, возникших в результате ионизации атомов акцепторной примеси (отдающей электроны.)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]