
- •Электротехника
- •Электрические цепи постоянного тока
- •Электрическая цепь и ее элементы
- •Признаки классификации электрических цепей
- •Задачи анализа и расчета электрических цепей
- •1.1.4. Э.Д.С., напряжение, ток и их условные положительные Направления
- •1.1.5. Сопротивление проводников
- •1.1.6. Источники эл. Энергии и схемы их замещения
- •1.1.7. Основные законы электрических цепей.
- •Лекция №2
- •1.1.8. Эл. Энергия и мощность в цепях постоянного тока
- •1.1.9 Простые эл. Цепи с последовательным соединением приемников
- •Расчет схемы рис.1.21
- •1.1.13. Методы расчета электрических цепей постоянного тока а. Метод непосредственного применения законов Кирхгофа.
- •Б. Метод контурных токов.
- •В. Метод суперпозиции
- •Г. Метод узлового напряжения. Вывод расчетных соотношений.
- •Метод эквивалентного генератора.
- •Последовательность расчета методом эквивалентного генератора.
- •Лекция №3
- •1.1.14. Баланс мощности в цепях постоянного тока.
- •1.1.15.Способы соединения источников электрической энергии.
- •1.1.16. Условие передачи максимальной мощности источника во внешнюю цепь.
- •Лекция №4
- •1.2.1 Основные понятия о синусоидальном переменном токе.
- •2. Процесс заряда конденсатора от источника постоянного напряжения
- •1.2.3. Действующее значение синусоидальных эдс, тока и напряжения.
- •4. Методы описания и представления синусоидального тока, эдс и напряжения
- •1.2.9 Цепь синусоидального тока с реальной катушкой индуктивности
- •1.3.1. Последовательный колебательный контур. Резонанас напряжений.
- •1.4. Трансформаторы.
- •1.4.1 Назначение и принцип действия трансформатора.
- •1.4.2. Холостой ход трансформатора.
- •1.4.3. Нагрузка трансформатора.
- •1.4.4. Схема замещения трансформатора с нагрузкой.
- •1.4.5. Короткое замыкание трансформатора.
- •1.4.6. Внешняя характеристика трансформатора.
- •1.4.7. Потери мощности и кпд трансформатора.
- •2. Основы электроники
- •2.1 Полупроводники. Зонная теория.
- •На рис. 1.1. Представлена схема энергетических зон
- •2. Собственные полупроводниковые приборы.
- •Примесные поупроводники
- •Различают:
- •2.1.2 Электронно - дырочный переход (р - n переход).
- •2.1.2.1 Процессы в p- n переходе при отсутствии внешнего источника.
- •2.1.2.2 Прямое включение p – n перехода.
- •2.1.3 Виды полупроводниковых диодов.
- •Iобр.(Iо) – среднее значение
- •Фотодиоды
- •2.1.4 Транзисторы
- •2.1.4.1 Униполярные (полевые) транзисторы
- •2.1.4.2 Полевые транзисторыс управляющим p-n переходом
- •2.1.4.2 Мдп транзистора
- •2.1.5.2 Устройство и принцип действия транзистора.
- •Ik зависит от iб и не зависит от Uкэ
- •2.1.5.4 Дифференциальные параметры бт
- •2.1.5.5 Предельные параметры бт
- •2.1.5.6 Схема замещения бт с оэ
- •Лекция № 12
- •2.2.1 Усилительный каскад на бт с оэ.
- •2.2.1.1 Динамический режим работы бт.
- •Для определения Ки требуется определить h – параметры
- •2.2.1.2 Усилители кпу
- •Блок схема включения усилителя
- •А. Входные данные усилителя
- •2.2.1.3 Однокаскадные усилители на бт с оэ
- •2.2.2. Обратные связи в усилителе
- •Влияние ос на основные технические показатели усилителя
- •1.Уменьшает к в раз;
- •2. Стабилизирует коэффициент усиления при изменении параметров транзисторов, снижает уровень нелинейных искажений;
- •3. Последовательная оос увеличивает rвх, оос по u уменьшает rвых. Оос нашла преимущественное применение в усилителях
- •2.2.3 Усилители постоянного тока
- •При изменении знака Uвх должен измен. Знак Uвых
- •2 И 3 требование выполняется при работе усилителя в режиме а
- •1 Условие – необходимо отделить полезный сигнал от u питания.
- •1. Упт с одним источником питания
- •Дрейф нуля в упт
- •Борьба:
- •Стабилизация Uпит, стабилизация температуры режима работы, тренировка транзисторов.
- •Использование дифференциальных (балансных) упт.
- •Преобразование усиливаемого напряжения. Дифференциальный упт (балансный)
- •2.2.4 Операционные усилители.
- •Условное обозначение
- •2.2.4.2 Примеры схем на оу:
- •Инвертирующий усилитель
- •7. Дифференцирующий усилитель.
- •2.2.5 Генераторы гармонических колебаний(аг).
- •2 Условие – условие баланса амплитуд
- •3) Аг с кварцевой стабилизацией используют в качестве резонатора пластину кварца
- •Может быть использован как с или l. Можно включить в цепь пос как послед. Колебательный контур.
- •2.2.6 Выпрямители
- •2.2.6.1 Схема однополупериодного однофазного выпрямителя
- •2.2.6.1 Двухполупериодный выпрямитель мостового типа
- •2.2.6.3 Двухполупериодные выпрямители со средней точкой
- •2.2.6.4 Сглаживающие фильтры
- •2.2.6.5 Емкостные фильтры
- •2.2.6.6 Индуктивные фильтры
- •2.2.6.8 Стабилизаторы u и I
- •Промышленностью выпускается в интегральном исполнении -компенсационные стабилизаторы непрерывного действия серии к142
Лекция №1
Электротехника и основы электроники
Введение.
Электротехника – наука о техническом использовании электричества и магнетизма в народном хозяйстве.
Электроника – отрасль науки и техники, изучающая электронные приборы, схемотехнические устройства на их базе и применение этих устройств в различных промышленных установках.
В результате изучения курса студент должен знать:
Основные электротехнические законы, методы анализа и расчета электрических цепей, простейших электрических и электронных устройств;
Принципы действия и использования основных электротехнических, электронных устройств и электроизмерительных приборов;
Электрическую терминологию и символику;
Студент должен уметь
Выбирать и эксплуатировать в соответствии с паспортными данными необходимые электрические и электронные устройства и приборы;
Формулировать требования (выдавать техническое задание), предъявляемые к электроустановке, а при необходимости – и создавать несложные установки самостоятельно.
Оценивать перспективы своей отрасли с точки зрения автоматизации и кибернетизации производственных процессов
Электротехника
Электрические цепи постоянного тока
Электрическая цепь и ее элементы
Электрическая цепь – это совокупность соединенных друг с другом источников эл. энергии и ее приемников, по которым может протекать эл. ток.
Для удобства описания, анализа и расчета эл. цепей используют ее графическое изображение, называемой схемой эл. цепи (рис.1.1)
- Гальванический элемент И служит источником эл. энергии;
- лампа накаливания Л служит приемником эл. энергии, преобразующим ее в световую и тепловую;
- выключатель К коммутирует
- амперметр А измеряет ток в цепи;
- вольтметр V измеряет падение напряжения на лампе
б) в) г) д)
Рис.1.2 Источники эл. энергии:
а) гальванический элемент ;
б) батарея гальванических элементов;
в) генератор постоянного тока;
г) термопара;
д) фотодиод.
а) б) в) г) д)
Рис.1.3 Приемники электрической энергии
а) резистор;
б) лампа накаливания;
в) обмотка электромагнитного реле;
г) конденсатор;
д) катушка индуктивности.
а) б) в) г) д)
Рис.1.4 Коммутационные (вспомогательные) элементы эл. цепи
а) выключатель;
б) переключатель;
в),г) разъемы;
д) плавкий предохранитель.
Источники эл. энергии и элементы, обеспечивающие преобразование эл. энергии (диоды, транзисторы, тиристоры, и т.д.) наз. активными элементами эл. цепи.
Все остальные элементы (приемники и вспомогательные устройства) наз. пассивными элементами эл. цепи.
Признаки классификации электрических цепей
В зависимости от характеристик источников эл. цепи подразделяются на цепи постоянного и переменного тока.
В зависимости от структуры различают неразветвленные (одноконтурные) и разветвленные (многоконтурные) цепи
Рис.1.5. Схема разветвленной эл. цепи.
Элементы разветвленной цепи: узлы, ветвь, контуры
В узле-точке (а,в) разветвления сходится не менее 3 ветвей
Ветвь – это заключенный между двумя узлами участок эл. цепи, образованный одним или несколькими последовательно соединенными эле-ментами, через которые протекает один и тот же эл. ток (a-m-b, a-n-b, a-p-b)
Контур - это замкнутый путь, проходящий по ветвям эл. цепи, причем ни одна ветвь в процессе обхода не повторяется дважды (a-m-b-p-a, a-m-b-n-a,
a-n-b-p-a). I
Независимым наз. контур разветвленной цепи, отличающийся от других контуров этой цепи хотя бы одной ветвью.
Для эл. цепи (рис.1.5) количество ветвей в=3; узлов у=2; контуров Nk=3; независимых контуров Nнк=[в-(у-1]=[3-(2-1)]=2.
Эл. цепи, содержащие один источник эл. энергии, наз. простыми, а более одного – сложными. R3
Эл. цепи наз. линейными, если сопротивление ее элементов не зависит от силы протекающего по ним тока и от приложенных к ним напряжений. В противном случае цепь нелинейна.
б)
Рис 1.6. Вольт-амперные характеристики цепи: а) линейной; б) нелинейной
Графически выраженную зависимость между напряжением, приложенным к цепи, и протекающим в ней током наз. вольт-амперной характеристикой (ВАХ).
Пример
ВАХ линейной цепи, описываемой линейной
зависимостью
, где
, показан на
рис.1.6.а, а нелинейной цепи, описываемой
нелинейной зависимостью
– на рис 1.6.б
Далее преимущественно рассматриваются линейные цепи.