
- •1.1 Общая классификация магистральных трубопроводов
- •1.2 Состав сооружений магистральных газопроводов
- •1.3 Способы транспорта нефтяных грузов
- •1.4 Выбор наивыгоднейшего способа транспорта нефти
- •1.9. Требования, предъявляемые к трубам и материалам
- •1.10 Расчёт трубопровода на прочность
- •1.11. Необходимость подготовки нефти к магистральному транспорту
- •1.12 Образование нефтяных эмульсий и их основные свойства
- •1.13 Механические способы отделения воды от нефти
- •1.15 Электрическое деэмульгирование нефтяных эмульсий
- •1.16 Стабилизация нефти
- •1.17 Исходные данные для технологического расчёта нефтепровода
- •1.18. Основные формулы для гидравлического расчета нефтепровода
- •1.19. Коэффициент гидравлического сопротивления нефтепровода
- •1.20 Вывод обобщенной формулы Лейбензона
- •1.21 Гидравлический уклон
- •1.22 Характеристики трубопровода и насосной станции
- •1.23 Совмещенная характеристика нпс-трубопровод и баланс напоров
- •1.24. Определение числа перекачивающих станций
- •1.25 Перевальная точка и расчетная длина нефтепровода
- •1.26 Расстановка нпс по трассе нефтепровода
- •1.27 Расчет характеристик газовой смеси
- •1.28. Уравнение газового состояния
- •1.29. Необходимость подготовки газа к магистральному транспорту
- •1.30 Очистка газа от механических примесей
- •1.31 Изменение влажности газа по длине газопровода
- •1.32 Определение возможности гидратообразования в газопроводе
- •1.33 Методы борьбы с гидратообразованием
- •1.34 Осушка газа жидкими поглотителями
- •1.35 Осушка газа твердыми поглотителями
- •1.36. Низкотемпературная сепарация
- •1.37. Очистка газа от сероводорода и углекислого газа
- •1.38 Одоризация
- •1.39 Вывод формулы для определения массового расхода газа в газопроводе
- •1.40 Вывод формулы для определения коммерческого расхода газа в газопроводе
- •1.41 Коэффициент гидравлического сопротивления газопровода
- •1.42 Падение давления по длине газопровода. Среднее давление
- •Среднее давление в газопроводе.
- •1.43. Температурный режим газопровода
- •1.44. Расчет газопровода с учетом рельефа трассы
Среднее давление в газопроводе.
Среднее давление газа в газопроводе необходимо для определения его физических характеристик, а также для нахождения количества газа, заключенного в объеме трубопровода.
Поскольку изменение давления по длине газопровода происходит по закону параболы (рис. 2.5), то среднее давление необходимо определять как его среднеинтегральное значение
.(2.35)
Введем новую переменную
.(2.36)
Тогда
,(2.37)
откуда
.(2.38)
Подставляя (2.36) и (2.38) в исходное выражение (2.35), получим
.(2.39)
Найдем пределы интегрирования
Следовательно, среднее давление в газопроводе составит
(2.40)
1.43. Температурный режим газопровода
Учебник Алиева стр 143 Или Нечваль:
При стационарном движении газа массовый расход в газопроводе составляет
. (2.41)
Фактически движение газа в газопроводе всегда является неизотермическим. В процессе компримирования газ нагревается. Даже после его охлаждения на КС температура поступающего в трубопровод газа составляет порядка 2040С, что существенно выше температуры окружающей среды (T0). Практически температура газа становится близкой к температуре окружающей среды лишь у газопроводов малого диаметра (Dу<500 мм) на удалении 2040 км от компрессорной станции, а для газопроводов большего диаметра всегда выше T0. Кроме того следует учесть, что транспортируемый по трубопроводу газ является реальным газом, которому присущ эффект Джоуля-Томпсона, учитывающий поглощение тепла при расширении газа.
При изменении температуры по длине газопровода движение газа описывается системой уравнений:
удельной энергии
,
неразрывности
,
состояния
,
теплового баланса
.
Рассмотрим в первом приближении уравнение теплового баланса без учета эффекта Джоуля-Томпсона.
Величина atL называется безразмерным критерием Шухова
(2.43)
где
;
KСР – средний на участке полный коэффициент теплопередачи от газа в окружающую среду;
G – массовый расход газа;
cP – средняя изобарная теплоемкость газа.
Таким образом, температура газа в конце газопровода составит
. (2.44)
На удалении x от начала газопровода температура газа определяется по формуле
. (2.45)
Изменение температуры по длине газопровода имеет экспоненциальный характер (рис. 2.6).
Рассмотрим влияние изменения температуры газа на производительность газопровода.
, (2.53)
где
– поправочный коэффициент, учитывающий
изменение температуры по длине газопровода
(неизотермичность газового потока).
С учетом (2.53) зависимость для определения массового расхода газа примет вид
. (2.54)
Значение Н всегда больше единицы, следовательно, массовый расход газа при изменении температуры по длине газопровода (неизотермическом режиме течения) всегда меньше, чем при изотермическом режиме (T0=idem). Произведение T0Н называется среднеинтегральной температурой газа в газопроводе.
При значениях числа Шухова Шу4 течение газа в трубопроводе можно считать практически изотермическим при T0=idem. Такой температурный режим возможен при перекачке газа с небольшими расходами по газопроводам малого (менее 500 мм) диаметра на значительное расстояние.
Влияние изменения температуры газа проявляется при значениях числа Шухова Шу<4, то есть в подавляющем большинстве случаев. Чем больше диаметр газопровода, тем меньше интенсивность теплообмена между газовым потоком и окружающей средой. Конечная температура газа определяется методом последовательных приближений, из-за чего теплогидравлический расчет газопровода становится итерационным процессом.
При перекачке газа наличие дроссельного эффекта приводит к более глубокому охлаждению газа, чем только при теплообмене с грунтом. В этом случае температура газа может даже опуститься ниже температуры T0 (рис. 2.7).
Тогда с учетом коэффициента Джоуля-Томпсона закон изменения температуры по длине принимает вид
, (2.55)
где
– среднее давление на участке газопровода;
Di – коэффициент Джоуля-Томпсона.
Средняя температура газа TСР на участке газопровода определяется по формуле
. (2.56)