
- •1.1 Общая классификация магистральных трубопроводов
- •1.2 Состав сооружений магистральных газопроводов
- •1.3 Способы транспорта нефтяных грузов
- •1.4 Выбор наивыгоднейшего способа транспорта нефти
- •1.9. Требования, предъявляемые к трубам и материалам
- •1.10 Расчёт трубопровода на прочность
- •1.11. Необходимость подготовки нефти к магистральному транспорту
- •1.12 Образование нефтяных эмульсий и их основные свойства
- •1.13 Механические способы отделения воды от нефти
- •1.15 Электрическое деэмульгирование нефтяных эмульсий
- •1.16 Стабилизация нефти
- •1.17 Исходные данные для технологического расчёта нефтепровода
- •1.18. Основные формулы для гидравлического расчета нефтепровода
- •1.19. Коэффициент гидравлического сопротивления нефтепровода
- •1.20 Вывод обобщенной формулы Лейбензона
- •1.21 Гидравлический уклон
- •1.22 Характеристики трубопровода и насосной станции
- •1.23 Совмещенная характеристика нпс-трубопровод и баланс напоров
- •1.24. Определение числа перекачивающих станций
- •1.25 Перевальная точка и расчетная длина нефтепровода
- •1.26 Расстановка нпс по трассе нефтепровода
- •1.27 Расчет характеристик газовой смеси
- •1.28. Уравнение газового состояния
- •1.29. Необходимость подготовки газа к магистральному транспорту
- •1.30 Очистка газа от механических примесей
- •1.31 Изменение влажности газа по длине газопровода
- •1.32 Определение возможности гидратообразования в газопроводе
- •1.33 Методы борьбы с гидратообразованием
- •1.34 Осушка газа жидкими поглотителями
- •1.35 Осушка газа твердыми поглотителями
- •1.36. Низкотемпературная сепарация
- •1.37. Очистка газа от сероводорода и углекислого газа
- •1.38 Одоризация
- •1.39 Вывод формулы для определения массового расхода газа в газопроводе
- •1.40 Вывод формулы для определения коммерческого расхода газа в газопроводе
- •1.41 Коэффициент гидравлического сопротивления газопровода
- •1.42 Падение давления по длине газопровода. Среднее давление
- •Среднее давление в газопроводе.
- •1.43. Температурный режим газопровода
- •1.44. Расчет газопровода с учетом рельефа трассы
1.32 Определение возможности гидратообразования в газопроводе
Природные газы в определенных термодинамических условиях вступают в соединение с водой и образуют гидраты, которые, скапливаясь в промысловых и магистральных газопроводах, существенно увеличивают их гидравлическое сопротивление и, следовательно, снижают пропускную способность. Гидраты представляют собой соединения молекулярного типа, возникающие за счет Ван-дер-Ваальсовых сил притяжения. Молекулы воды при образовании гидратов как бы раздвигаются молекулами газа. Образующиеся при этом полости между молекулами воды полностью или частично заполняются молекулами газа. Гидраты природных газов представляют собой неустойчивые соединения, которые при повышении температуры или понижении давления разлагаются на газ и воду. По внешнему виду – это белая кристаллическая масса, похожая на лед или снег.
Условия образования гидратов газа могут быть представлены равновесными кривыми гидратообразования в координатах температура Т – давление р (рис. 3.21). Графики гидратообразования получены из условия равновесия пар–жидкость. Упругость паров воды над гидратом при данной температуре ниже упругости насыщенного пара над водой. Эксперименты показывают, что условия образования и разложения гидратов неидентичны. Давление начала разложения гидратов значительно ниже давления начала образования гидратов при одной и той же температуре. Такое снижение равновесного давления разложения по отношению к давлению образования гидратов происходит в результате уменьшения упругости паров воды над образующимися гидратами. Для определения условий образования и разложения гидратов пользуются графиками, характеризующими упругость паров воды в равновесии с водой р01 и гидратами р1 (рис. 3.22). Так, при температуре Т1 гидраты могут образоваться только при влажности газа, соответствующей упругости паров воды р01, т. е. при р >р01. При образовании гидрата часть паров воды, соответствующая снижению упругости паров с р01 до р1 переходит в гидрат. Таким образом, при образовании гидрата влагосодержание газа после гидратной пробки уменьшается в соответствии со снижением упругости паров воды до р1.
В газопроводе очень важно определить место образования гидратов. Для этого необходимо знать (так же как и для определения самой возможности образования гидратов) состав и начальную влажность газа, а также изменение его давления и температуры в газопроводе. Пусть давление р в газопроводе (рис. 3.23) меняется по кривой AB, а температура Т – по кривой CD. На основании равновесных кривых гидратообразования (см. рис. 3.21) и линии падения давления АВ строим кривую МN равновесной температуры гидратообразования Тгидр для данного газопровода. Точки m и n пересечения кривых, показывающих изменение в газопроводе температуры и равновесной температуры гидратообразования газа, определяют участок возможного образования гидратов при условии полного насыщения газа водяными парами (участок mn). Однако зона выпадения гидратов в газопроводе фактически будет зависеть от начальной влажности газа, подаваемого в газопровод, т. е. в конечном счете от точки росы газа. Если последняя оказывается выше температуры газа в точке, соответствующей, например, точке k, то гидратообразование начнется в точке m. Как отмечалось ранее, на конечном участке газ недонасыщен парами воды, поскольку при практически неизменной температуре давление в газопроводе быстро падает и, следовательно, гидратообрязование на этом участке невозможно (начало этого участка на рис. 3.23 отмечено точкой f). Таким образом, зона гидратообразования данного газопровода определяется участком mf. Однако гидраты могут образовываться не на всем протяжении участка mf. Это объясняется тем, что в результате образования гидратов в точке m упругость паров воды уменьшается, что соответствует снижению точки росы газа от m до m1. В дальнейшем по мере снижения температуры газ все больше насыщается парами воды, и в точке r он будет снова полностью насыщен, что приведет к образованию второй гидратной пробки. После этого точка росы газа снижается до r1, и оказывается ниже минимальной температуры газа в газопроводе, что исключает образование третьей гидратной пробки. Таким образом, в газопроводе в зависимости от характера изменения температуры и давления газа и его начальной влажности (точки росы) могут образоваться несколько локальных гидратных пробок.
2 Вариант ответа (по моему покороче и понятнее!!!) Нечваль стр 148
Гидраты газов представляют собой кристаллические соединения, образованные ассоциированными молекулами углеводородов и воды и имеющие строго определенную структуру. Состав гидратов выражается формулой CnH2n+2mH2O: CH46H2O; C2H67H2O; C3H818H2O. Внешне гидраты напоминают кристаллы льда или мокрый спрессованный снег. Скопления гидратов в линейной части газопроводов могут вызвать частичную или полную их закупорку и тем самым нарушить нормальный режим работы магистрали.
На процесс образования гидратов влияет состав транспортируемого газа, содержание воды, давление и температура. Обязательными условиями существования гидратов является снижение температуры газа ниже точки росы, при которой происходит конденсация паров воды (наличии капельной влаги в газе), а также ниже температуры равновесного состояния гидратов.
Поскольку гидраты природных газов являются нестойкими химическими соединениями, любое отклонение от термодинамического равновесия приводит к их распаду. Однако, если термодинамическое равновесие сохраняется, скопления гидратов в газопроводе могут находиться длительное время. Поэтому для своевременного предупреждения образования гидратных пробок необходимо знать условия их возникновения и прогнозировать места их возможных скоплений [5,12,21].
Максимальное содержание влаги в газе на линии насыщения W определяют по графику в зависимости от давления и температуры (рис. 2.18).
При известном значении максимального влагосодержания можно определить температуру, соответствующую точке росы, которая понижается при уменьшении давления.
Условия образования гидратов природных газов с различной относительной плотностью можно определить по графику равновесного состояния гидратов (рис. 2.19).
Слева от кривых – область существования гидратов, а справа – область их отсутствия. Чем выше относительная плотность газа по воздуху, тем меньше давление, при котором образуются гидраты.
Для обнаружения зоны возможного гидратообразования необходимо знать влагосодержание и плотность транспортируемого газа, а также его температуру и давление. Для заданного участка в принятых масштабах строятся кривые изменения давления 1 и температуры 2 по длине газопровода. Используя кривые влагосодержания (рис. 2.18) и равновесного состояния гидратов (рис. 2.19), на этот же график наносятся кривые точки росы 3 и равновесной температуры гидратообразования 4 (рис. 2.20).
Рассмотрим в качестве примера определение зоны возможного гидратообразования в газопроводе протяженностью L.
Пусть AM – линия точки росы, которая в точке M совпадает с температурой газа в газопроводе. Так как газ на участке AM имеет температуру выше точки росы T(L)>TР(L), то он будет недонасыщенным, и следовательно в самом начале газопровода (зона I) влага выпадать не будет.
В точке M температура газа T(L) равна температуре точки росы TР(L). Это соответствует началу конденсации влаги на стенке газопровода (зона II). Однако, при снижении температуры от точки M до точки B гидраты образовываться не могут, так как температура газа в газопроводе T(L) выше равновесной температуры гидратообразования TРГ(L).
В точке B температура газа становится равной равновесной температуре гидратообразования T(L)=TРГ(L). Следовательно, начиная с точки B, в газопроводе могут образовываться гидраты (зона III). Зона возможного гидратообразования будет распространяться до точки C, поскольку за ней температура газа становится выше равновесной температуры гидратообразования T(L)>TРГ(L) и гидраты существовать уже не могут.
Участок CE соответствует наличию капельной влаги в газе и на стенках трубопровода, так как выполняется условие T(L)<TР(L).