
- •Технологическая часть
- •1.1. Назначение и условия работы детали
- •1.3 Составление кинематической схемы перемещения инструмента для каждого перехода
- •1.4. Формирование группы деталей и конструирование комплексной детали
- •1.5 Определение кода комплексной детали по классификатору ескд
- •1.6 Расчет годовой приведенной программы запуска деталей
- •1.7. Оценка технологичности детали
- •1.8. Определение припуска расчетно-аналитическим методом и расчет операционных размеров
- •1.9. Определение припуска нормативным методом и расчет операционных размеров
- •1.10 Определение режимов резания для токарной обработки для диаметральных размеров
- •1.11 Определение режимов резания для токарной обработки (торцевые поверхности)
- •1.12 Определение режимов резания для токарной обработки для торцевых поверхностей
- •1.13 Определение режимов резания для сверлильной обработки
- •1.14 Определение режимов резания для фрезерования
- •1.15 Определение норм времени при работе на станках с чпу
- •1.16 Определение норм времени для токарной обработки на станках с чпу
- •1.17 Определение норм времени для фрезерной обработки на станках с чпу
- •1.18 Выбор режущего инструмента для токарной обработки
- •1.19 Выбор режущего инструмента для сверлильной обработки
- •1.20 Выбор режущего инструмента для фрезерной обработки
- •Конструкторская часть
- •2.1. Определение количества оборудования основного производства
- •2.2. Расчёт системы инструментального обеспечения
- •2.3. Расчёт массы стружки
- •2.4. Подбор оборудования
- •2.5 Токарный станок модели ирт180пмф4
- •2.6 Горизонтальный многоцелевой сверлильно-фрезерно-расточной станок модели ир320пмф4
- •2.7 Станок круглошлифовальный 3м153у
- •2.8 Зубофрезерный станок 5в371
- •2.9 Устройство автоматической смены инструмента
- •2.10 Модульное оборудование системы. Удаления отходов производства. Технологические проблемы удаления стружки
- •2.11 Назначение и принцип работы ртк ионно-плазменного нанесения покрытий
- •2.12 Промышленный робот м20п
- •2.14 Определение количества и состава оборудования основного производства.
- •2.15 Расчет и проектирование межоперационного склада заготовок и деталей
- •2.16 Расчет числа позиций загрузки и разгрузки
- •2.17 Расчет числа позиций контроля
- •2.17 Определение состава оборудования для транспортирования деталей
- •2.19 Определение состава оборудования для транспортирования инструмента
- •2.20 Определение состава оборудования для транспортирования стружки
- •2.21 Расчет годовой программы запуска
- •Расчет годовой трудоемкости для цеха
- •Расчет грузопотоков
- •2.24 Проектирование системы технического обслуживания механосборочного цеха
- •2.25. Система контроля качества изделий
- •2.26. Определение площадей складов и вспомогательных площадей
- •2.27. Определение численности итр
- •2.28. Расчет общих потребностей цеха
- •2.29. Выбор типа и конструкции здания
- •Специальная часть
- •3.1Система управления движения по одной координате
- •3.1.Онисание элементов схемы
- •3.3 Разработка схемы управления тензометрическим датчиком
- •3.4 Описание элементов
- •4.Охрана труда
- •4.1 Анализ вредных факторов на производстве
- •Параметры микроклимата в производственном помещении.
- •Экономика
- •5.1 Расчет себестоимости и цены вала-шестерни.
- •5.2 Полная себестоимость изготовления вала-шестерни
- •Приложение
2.9 Устройство автоматической смены инструмента
В ГПС смена инструмента происходит автоматически. Основная цель – сократить время простоя дорогостоящих станков. Смену инструмента осуществляют следущие устройства:
- накопители, револьверные головки(РГ), магазины инструментальных гильз, инструментальные магазины;
- загрузочно-разгрузочные устройства для смены и установки инструмента в шпиндель станка;
- промежуточные конвейеры.
РГ представляют собой несколько инструментальных шпинделей смонтированных в поворотном корпусе. Смена инструмента происходит за 2-3 сек. Различают РГ с перпендикулярным расположением к оси головки, представлены на рисунке 13, и с параллельным, представлены на рисунке 13.1.
Рисунок 13 -. Перпендикулярная револьверная головка
2.10 Модульное оборудование системы. Удаления отходов производства. Технологические проблемы удаления стружки
Для обслуживания станков всех типов подбираем пылестружкоотсасывающий агрегат ВЦНИИОТ – 900
В условиях автоматического режима обработки удаление стружки из зоны резания является одним из важных условий надежной, качественной и высокопроизводительной обработки изделий на металлорежущем оборудовании ГПС. Наличие стружки может привести к появлению дефектов на обрабатываемой поверхности, вызвать преждевременный износ режущего инструмента, его затупление и поломку.
Для удаления стружки используются системы (рис. 15), состоящие из следующих составных элементов:
- пылестружкоотводчиков, которые осуществляют удаление пыли и стружки из зоны резания;
- устройств транспортирования стружки за пределы станка или участка;
из циклонов и фильтров, которые обеспечивают отделение стружки от воздуха и СОЖ;
- системы магистрального транспортирования стружки к устройствам переработки;
- системы переработки стружки, осуществляющей обезжиривание, дробление и брикетирование стружки.
Рисунок
15 - Структурная схема системы удаления
отходов производства
Для надежной работы системы удаления и переработки стружки должна быть обеспечена однородная фракция стружки (обычно длинной 1-2 см).
Рисунок 16 - Передвижной отсасывающий агрегат
ВЦНИИОТ 900.
2.11 Назначение и принцип работы ртк ионно-плазменного нанесения покрытий
Данный РТК, предназначен для нанесения ионно-плазменного покрытий (TiN, Ti) на зубья вала-шестерни, с целью повышения их износостойкости. А, следовательно, увеличения времени их работы.
В данном РТК реализуются все необходимые операции для получения качественных покрытий, а именно достижение нужной чистоты поверхностного слоя путем промывки и последующей сушки исходных деталей, а далее нанесение покрытия в установке «Украина - 3». Загрузку установки и транспортировку деталей осуществляет промышленный робот М20П40.01-02. Детали расположены по одной в специальном деталедержателе. Робот принимает детали и после ионно-плазменной обработки слаживает на тактовый стол.
2.12 Промышленный робот м20п
Для обслуживания станков всех типов подбираем промышленный робот М20П, схема которого приведена на рисунке 17
Рисунок.17 Промышленный робот М20П
Промышленный робот с ЧПУ М2ОП предназначен для автоматизации установки – снятия заготовок и деталей, смены инструментов и других вспомогательных операций при обслуживании станков с ЧПУ. Устройство данного типа может обслуживать одни или два станка и образовывать вместе с накопительными и транспортными устройствами гибкий производственный обрабатывающий комплекс, предназначенный для продолжительной работы без участия оператора.
. 2.13 Исходные данные по проектирование гибкого автоматизированного участка
месячный фонд работы оборудования 0 (зависит от коэффициента сменности);
ч.
число операций, выполняемых на участке в течение месяца, О=210, шт.
средняя масса и габариты обрабатываемых деталей; m=50кг, l b h=300 400 350
среднее месячное количество наименований деталей (номенклатура), обрабатываемых на автоматизированном комплексе kнаим = 50 шт.;
средняя трудоемкость обработки одной детали tоб= 2,0 ч;
средняя месячная программа выпуска деталей одного наименования Nнаим = 28 шт.;
среднее время установки заготовки в приспособление tЗ= 2 мин.
среднее время разгрузки заготовки из приспособления tР= 2 мин.
время на промежуточный контроль tKп= 4 мин.
время на окончательный контроль tKо= 15 мин.
число деталей, через которое деталь выводится на контроль по требованию технолога, n1 = 9 шт.
среднее время работы инструмента tИН = 110 мин;
среднее число дублеров инструмента на одну деталь nДБ= 2 шт.
коэффициент партионности деталей, m = 1,5
число инструментов, не размещающихся в магазине станка nИН = 2 шт.
число наименований деталей, последовательно обрабатываемых на станке nД=4 шт.