
- •Как определить понятие «конструирование» ?
- •Что понимают под термином «работоспособность» ?
- •Каковы основные критерии работоспособности?
- •4. Как определить понятие «надежность»?
- •5. Почему необходима стандартизация изделий машиностроения?
- •6. Чем можно объяснить широкое применение сталей в машиностроении?
- •7. Какие материалы можно отнести к антифрикционным?
- •Каковы достоинства металлокерамических материалов?
- •Классификация машин и механизмов.
- •Расчет деталей машин на прочность и жесткость.
- •Виброустойчивость деталей машин.
- •Износоустойчивость рабочих поверхностей. Виды износа.
- •Водородное изнашивание деталей (вираз и видис).
- •Машиностроительные материалы (конструкционные стали).
- •1. Строение и свойства конструкционных сталей
- •2. Классификация конструкционных сталей
- •3. Углеродистые стали
- •3.1 Стали обыкновенного качества
- •3.2 Углеродистые качественные стали
- •Машиностроительные материалы (чугуны).
- •Машиностроительные материалы (стали легированные, специальные стали).
- •4. Конструкционные легированные стали
- •4.1 Конструкционные низколегированные стали
- •4.2 Конструкционные цементуемые легированные стали
- •5.1 Мартенситностареющие высокопрочные стали
- •5.2Коррозионностойкие стали
- •5.3 Жаростойкие стали
- •5.4 Криогенные машиностроительные стали и сплавы
- •5.5 Износостойкие стали
- •5.6 Пружинные стали и сплавы
- •5.7 Автоматные стали
- •5.8 Шарикоподшипниковые стали
- •17. Технологичность деталей машин.
- •18. Надежность, долговечность, работоспособность деталей.
- •19. Конструкция и параметры зубчатых передач.
- •20. Материалы и термическая обработка зубчатых передач.
- •21. Методы нарезания зубчатых колес.
- •2)Метод обкатки(Метод огибания):
- •22. Геометрические параметры цилиндрических зубчатых колес
- •23. Расчет цилиндрических зубчатых колес на контактную прочность
- •Расчет цилиндрических зубчатых колес на изгибную прочность.
- •Силы, действующие в прямозубых цилиндрических передачах.
- •Геометрические параметры конических зубчатых передач.
- •Силы, действующие в конических зубчатых передачах.
- •Расчет конических зубчатых передач на выносливость по контактным напряжениям
- •29. Расчет конических зубчатых передач на прочность при изгибе.
- •Шевронные зубчатые передачи. Геометрические параметры, проектирование и расчет. Шевронные колеса
- •Планетарные зубчатые передачи с внутренним и наружным зацеплением зубьев.
- •34. Устройство дифференциала
- •35. Классификация червячных передач.
- •36. Цилиндрические червячные передачи.
- •Силы в червячном зацеплении.
- •Тепловой расчет червячных передач.
5.1 Мартенситностареющие высокопрочные стали
Мартенситностареющие стали представляют собой сплавы железа с никелем (8 - 20%), а часто и с кобальтом. Для протекания процесса старения в мартенсите сплавы дополнительно легируют Ti, Be, Al, Nb, W, Mo. Никель и кобальт способствуют упрочнению при старении и одновременно повышают сопротивление хрупкому разрушению. Хром (легирование до12%) упрочняет мартенсит сталей Fe - Ni - Ti и Fe - Ni - Al при старении повышает сопротивление коррозии даже в сильно агрессивных средах (морской воде, кислотах и др).
Мартенситностареющие стали - особо высококачественные и из-за высокой стоимости применяются для деталей наиболее ответственного назначения: Н18К9М5 - шестерни, валы, корпуса ракет; Н10Х12Д2Т - детали химической аппаратуры, пружины; Н4Х12К15М4Т - штампы горячего деформирования, детали теплоэнергетических установок и др.
Мартенситностареющие стали применяют в авиационной промышленности, в ракетной технике, в судостроении, в приборостроении, в приборостроении для упругих элементов, в криогенной технике.
5.2Коррозионностойкие стали
Коррозионностойкие стали и ставы (ГОСТ 5632-72), в том числе высоколегированные, обладают достаточной стойкостью против коррозии только в ограниченном числе сред. Они обязательно имеют в своем составе более 12,5%Сг, роль которого состоит в образовании на поверхности изделия защитной (пассивной) оксидной пленки, прерывающей контакт с агрессивной средой. При этом лучшей стойкостью против коррозии обладают те стали и сплавы, в которых все содержание хрома приходится на долю твердого раствора. Содержание углерода должно быть низким, чтобы уменьшить переход хрома в карбиды, так как это может уменьшитьконцентрацию хрома в защитной пленке. Для предотвращения выделений карбидов хрома используют также быстрое охлаждение из области g-твердого раствора или легирование титаном, ванадием, ниобием или цирконием для связывания углерода в более устойчивые карбиды.
Физико-химические свойства коррозионностойких сталей меняются в довольно широком диапазоне в зависимости от структуры. Структура для наиболее характерных сплавов этого назначения может быть: ферритно-карбидной и мартенситной (12Х13, 20Х13, 20Х17Н2, 30Х13, 40Х13, 95Х18 - для слабых агрессивных сред (воздух, вода, пар); ферритной (15Х28) - для растворов азотной и фосфорной кислот; аустенитной (12Х18Н10Т) - в морской воде, органических и азотной кислотах, слабых щелочах; мартенситно-стареющей (10Х17Н13МЗТ, 09Х15Н8Ю) - в фосфорной, уксусной и молочных кислотах. Сплав 06ХН28МТ может эксплуатироваться в условиях горячих (до 60°С) фосфорной и серной (концентрации до 20%) кислот.
Коррозионная стойкость сталей может быть повышена термической обработкой и созданием шлифованной поверхности.
Коррозионностойкие стали и сплавы классифицируют в зависимости от агрессивности среды, в которой они используются, и по их основному потребительскому свойству на собственно коррозионностойкие, жаростойкие, жаропрочные и криогенные.
Изделия из собственно коррозионностойких сталей (лопатки турбин, клапаны гидравлических прессов, пружины, карбюраторные иглы, диски, валы, трубы и др.) работают при температуре эксплуатации до 550°С.