Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Предмет и задачи биологической химии (Автосохра...docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
1.6 Mб
Скачать

Oh (гидроксил, гидроксид - радикалы.)

Гидроксид-радикал практически не участвует в образовании других АФК, но является важным фактором окислительной модификации многих клеточных структур. Он может окислять молекулы белков и липидов, особенно активно атакуя мембранные липиды, которые содержат ненасыщенные двойные связи. Этот процесс приводит к образованию липидных гидроперекисей и изменению свойств клеточных мембран. Гидроксид-радикал вызывает разрыв связей в молекуле ДНК, что может вызывать глубокие повреждения генетического аппарата клеток. Константы скоростей его взаимодействия с большинством биологически важных молекул близки к диффузионным.

Вследствие высокой химической активности гидроксид-радикала, время его жизни в клетке составляет 100 нс, а расстояние, которое он может пройти от места образования до места взаимодействия с мишенью ~100 нм.

Гипохлорит-анион

Гипохлорит-анион (OCl-), представляющий собой активную форму хлора и условно относимый к АФК, так как он обладает сходными свойствами окислителя. В ходе миелопероксидазной реакции Н2О2 ферментативно превращается в гипохлорит-анион, который является мощным окислителем. Гипохлорит - анион опасен сам по себе, а также может взаимодействовать с О2. - с образованием гидроксид-радикала и с перекисью водорода с образованием синглетного кислорода.

Радикал

К радикальным компонентам клетки относится NO-радикал, образуемый ферментом NO-синтаза и участвующий в образовании пероксинитрита при взаимодействии с супероксид.

Механизмы возникновения афк

Молекулярный кислород в основном своем триплетном состоянии имеет два неспаренный электрона с одинаково ориентированными спинами, занимающих самостоятельные внешние орбитали. Каждая из этих орбиталей может принять ещё один электрон. Полное восстановление О2 в Н2О требует присоединения четырех электронов. В большинстве случаев в организме восстановление кислорода происходит поэтапно, с переносом одного электрона на каждом этапе.

При присоединении первого электрона образуется супероксидный анион 2О-, который имеет на внешней орбитали неспаренный электрон. Такие атомы называются свободными радикалами. Супероксид, получая ещё одни электрон превращается в пероксид водорода Н2О2, присоединение третьего приводит к образованию молекулы воды и гидроксильного радикал ОН. Четвертый электрон превращает гидроксил в воду.

Таков нормальный механизм обезвреживания кислорода, общий для всех процессов в организме. Но по некоторым причинам (о них речь пойдет ниже) может произойти сбой в этой системе (либо запуск определенной программы, такой как апоптоз), что приведет к нарушению присоединения электрона и как следствие появление свободный радикалов (АФК). По некоторым оценкам, даже в физиологически оптимальных условиях примерно 2-5 % проходящих по ЭТЦ электронов идут на образование супероксидных радикалов. Кроме того, в определенных условиях (например, при окислении пиридиннуклеотидов и полифенолов) при физиологическом значении рН некоторые апопластные пероксидазы, проявляя свою оксидазную функцию, способны к образованию супероксидного анион-радикала. Установлено, что пероксидаза клеточной поверхности является одним из основных источников супероксидного радикала при отсечении корней от проростков пшеницы.

Существует ещё несколько механизмов возникновения свободных радикалов. Например, в процессе функционирования цитохрома Р-450 в микросомах образуется такой тип АФК как перекись водорода. Принято считать, что ее образование связано с тем, что в процессе цитохром Р-450-зависимого окислительного цикла образующийся тройственный комплекс, включающий цитохром Р-450, субстрат и ион супероксида (оксицитохром Р-450), может, помимо основного пути превращения - внедрения кислорода в структуру субстрата, - распадаться с образованием исходного комплекса субстрат-цитохром Р-450 и высвобождением супероксида (процесс "разобщения") с последующей его дисмутацией, с образованием перекиси водорода. В присутствии ионов железа перекись водорода в результате одноэлектронного переноса может восстанавливаться до гидроксил-радикала - сильнейшего окислителя. Показано также, что высвобождение железа из ферритина - белка, являющегося основным депо железа в клетке, происходит в результате образования супероксида при функционировании цитохрома Р-450

Таким образом, супероксид, образующийся при "разобщении" на цитохроме Р-450, может быть источником перекиси водорода и генератором ионов железа из ферритина-компонентов, необходимых для образования различных активных форм кислорода. Действительно, образование супероксида, перекиси водорода и гидроксил радикала показано в реконструированных ферментных системах с использованием различных изоформ цитохрома Р-450.

Кроме того АФК в организме могут образовываться и ходе реакций самопроизвольного окисления ряда веществ. Одним из важнейших примеров является окисление гемоглобина в метгемоглобин, при котором образуется супероксид. При нормальном значении ph и концентрации кислорода стабильной формой железа является Fe3+. Ион Fe2+ легко окисляется в Fe3+. Однако в молекуле гемоглобина эта реакция существенно заторможена благодаря белковой части в окружении гема. И все же с большей скоростью происходит окисление оксигемоглобина кислородом с образованием метгемоглобина.

Hb (Fe2+) O2=Hb (Fe3+) +O2-

Образующийся супероксид кислорода способен окислять оксигемоглобин.

Hb (Fe2+) O2+O2 - + 2H+= Hb (Fe3+) +O2+ H2O2

Пероксид водорода - тоже окислитель оксигемоглобина.

Hb (Fe2+) O2+H2O2= Hb (Fe3+) +OHрадикал+OH-

Гидроксильный радикал окисляет гемоглобин.

Hb (Fe2+) +OH= Hb (Fe3+)

Но тем не менее, общепринято, что дыхательная цепь митохондрий является основным источником АФК в большинстве клеток. Вместе с тем представляет интерес выяснение, какие именно компоненты дыхательной цепи и в каких условиях являются основными АФК - генераторами. Исходя из стандартных редокс-потенциалов окислительно-восстановительных центров различных Комплексов дыхательной цепи, а также на основе экспериментальных данных были выделены три основных источника АФК: НАДН - убихинон оксидоредуктаза, сукцинат-убихинон оксидоредуктаза и убихинол-цитохром с оксидо-редуктаза.

Не существует единого мнения по поводу того, в каких именно участках дыхательной цепи происходит образование АФК и каков вклад каждого из них в этот процесс. Теоретически одноэлектронное восстановление кислорода может происходить в любом из редокс-центров Комплекса I, а также в высокопотенциальных редокс-центрах Комплексов 2 и 3. По мнению большинства исследователей, основным АФК-генератором в дыхательной цепи является Комплекс I. Однако ряд авторов полагает, что Комплекс III вносит по крайней мере такой же вклад в образование АФК. Существует также мнение, что заметным источником АФК может служить также Комплекс II. На сегодняшний день признается, что все три комплекса образуют АФК.

Биологическая роль свободных радикалов:

  • участвуют в обновлении мембран,удаляя из мем-н отработ-х мол-ы липидов.

  • регул-ют прониц-ть м-н и тран-т ч\з м-ы в-в.

  • регул-т биосинтез BAB,V обр-я из ненасыщ-х жирных к-т: прстогландины,лейкотриены.

  • участ-т в делении и дифф-ке клеток.

  • активир-т / NO-синтаза-спос-т обр-ю- NO,')? участв. в передаче гормон, сигнала в кл

  • участ-т в проведении н.импульса

  • обеспечивает защ-ю ф-ию лейкоцитов,лимфоцитов и др.

Если обр-я свободных радикалов идёт в больших кол-ах то обр-я «02

стресс».Причинами могут быть: неблагопр-ые факторы внешней среды,гипероксия и

гипоксия,действие э\м полей,токсических в-в,уф облучения и тд.

Токсичность своб-х радикалов:

  • в больших кол-ах своб. радикалы разрушают липидный бислой,обнажают белки м-н,делают доступными для протеаз.

  • свободные радикалы образуют каналы,в результате приводящие к потологии(избыток Са*2)

  • нарушают рецепторный аппарат м-ы

  • действ-т на н.к. выз-т повреждения.

  • оказывают поврежд-ие дей-е на белки кл. Особенно чув-ы /: СДГ,ксантиноксидаза,цитохромоксидаза.

  • выступают как разобщители прод-в ткан-ого дыхания и окис-ого фосфорил-я.

  • повреждают м-ы лизосом.

Очень часто в р-ях,где участвуют своб.радикалы обр-я новые м-ы своб.радикалов. Действуя на липиды св.рад. инициируют процессы перекисного окисления липидов в м-не кл. Суть процесса-своб.радикалы дей-ют на остатки непред-х жирных к\т,^ нах-я в составе фосфолипидов клет мембран.Взаимод-ют с атомами Н,распол-ого рядом с 2-й связью и обр-т пергидроксигр-ы.Это приводит к изм-ю стр-ры м-ны.

Антиоксидантная система организма, факторы клеточной защиты

Высказывается точка зрения о нескольких уровнях защиты клеток мак-роорганизма от активных форм кислорода, которые могут быть представлены следующим образом:

- системная защита клеток за счет значительного снижения напряжения O2 в тканях по сравнению с атмосферным воздухом;

- обеспечивается в процессе четырехэлектронного восстановления основной массы внутриклеточного O2 при участии цитохромоксидазы без освобождения свободных радикалов;

- ферментативное удаление образовавшихся супероксидного анион-радикала и H2O2;

- наличие ловушек свободных радикалов (антиоксидантов);

- ферментативное восстановление гидроперекисей полиненасыщенных жирных кислот.

Эффекторные компоненты антиоксидантной системы называются антиоксидантами. Число эндогенных соединений, относимых к антиоксидантам, постоянно возрастает. Нет единой универсальной классификации антиоксидантов.

Некоторыми авторами предпринята попытка классификации антиоксидантов с точки зрения их ММ на 2 группы:

группа. Высокомолекулярные соединения - ферменты антиоксидантной защиты, а также белки, способные связывать ионы Fe и Cu, являю-щиеся катализаторами свободнорадикальных процессов. Антиоксидантные ферменты (СОД, церулоплазмин, каталаза, глутатионзависимые ферменты) обеспечивают комплексную антирадикальную защиту биополимеров. Для ферментативных антиоксидантов характерны высокая специфичность, строго определенная органная и клеточная локализация, а также использование в качестве катализаторов металлов Cu, Fe, Mn, Zn, Se.

К числу белков, обладающих способностью связывать металлы с переменной валентностью и соответственно обладающих антиоксидантными свойствами, относят альбумины крови, трансферрин, ферритин, лактоферрин. Многие из них весьма эффективны в ингибировании свободнорадикаль-ных процессов, но слабо проникают через мембраны и тканевые барьеры.

группа. Низкомолекулярные антиоксиданты: некоторые аминокислоты, полиамины, мочевина, мочевая кислота, глутатион, аскорбиновая кислота, билирубин, токоферол, витамины группы A, K, P.

Действие ферментных антиоксидантов дополняется в целостном организме естественными антиоксидантами, в частности, витаминами группы Е, стероидными гормонами, серусодержащими аминокислотами, аскорбиновой кислотой, витаминами группы A, K и P, убихиноном, пептидами, производными гаммааминомасляной кислоты, фосфолипидами, продуктами метаболизма эйкозаноидов, а также тиолами, в частности, эрготионеином, содержащимся в эритроцитах печени, мозге.

Важную роль в антиоксидантной защите играют карнозин и его производные. Как известно, карнозин является природным дипептидом, способным метаболизироваться в организме человека и животных, обладает стабилизирующим эффектом в отношении pH среды, а также способностью взаимодействия с OH, супероксиданионрадикалом и гипохлориданионом с последующей их инактивацией. Карнозин регулирует за счет антиоксидантных свойств поведенческие реакции.