
- •1.Закон сохранения заряда. Закон кулона.
- •2.Электростатическое поле. Напряженность и потенциал. Соотношение между ними.
- •3.Принцип суперпозиции электростатических полей. Поле диполя.
- •4.Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме.
- •5.Типы диэлектриков. Свободные и связанные заряды в диэлектриках. Диэлектрическая восприимчивость вещества.
- •6.Теорема Гаусса для электростатического поля в диэлектрике.
- •7.Проводники в электростатическом поле. Поле внутри проводника и у его поверхности.
- •8.Электрическая емкость проводника. Конденсаторы.
- •9.Энергия уединенного проводника. Энергия электростатического поля.
- •10.Постоянный электрический ток. Связь плотности тока со скоростью направленного движения носителей тока.
- •11.Закон Ома для однородного участка цепи. Закон Ома в дифференциальной форме.
- •12.Работа и мощность тока.Закон Джоуля-Ленца.
- •13.Источники тока. Сторонние силы. Эдс источника.
- •14.Закон Ома для замкнутой цепи. Закон Ома для неоднородного участка цепи.
- •15.Правила Кирхгофа.
- •16.Постоянное магнитное поле. Вектор магнитной индукции.
- •21.Магнитная постоянная. Единицы магнитной индукции и напряженности.
- •22.Магнитное поле движущегося заряда.
- •23.Действие магнитного поля на движущийся заряд. Сила Лоренца.
- •24.Движение заряженных частиц в магнитном поле.
- •25.Ускорители заряженных частиц. Циклотрон.
- •26.Магнитные поля соленоида и тороида.
- •27.Работа по перемещению проводника и контура с током в магнитном поле.
- •28.Явления электромагнитной индукции(опыты Фарадея). Закон Фарадея и его вывод из закона сохранения энергию.
- •29.Вращение рамки с током в магнитном поле. Индуктивность контура. Самоиндукция.
- •30. Экстратоки при замыкании и размыкании цепи.
- •31. Взаимная индукция
- •32. Энергия магнитного поля
- •33. Магнитное поле в веществе.Намагниченность
- •34.Ферромагнетики.
- •35.Вихревое эл.Поле
- •36.Токи смещения.
- •37. Ур.Максвелла для эл.Магн поля
- •38.Осн.Законы оптики.Полное отражение
- •39.Тонкие линзы
- •40.Абберации( погрешности) оптических систем
- •41.Фотометрические хар-ки
- •42.Интерференция света
- •43.Интерференция света в тонких пленках
- •44.Принцип гюйгенса-френеля
- •45. Дифракция Фраунгофера на одной щели.
- •46. Дифракция Фраунгофера на одной дифракционной решетке.
- •47. Дисперсия света
- •49. Поляризация света.Закон Малюса
- •50.Закон брюстера
- •52.Формула Планка.Вывод из формулы планка опытных законов излучения.
- •53.Применение законов теплового излучения для измерения высоких температур. Тепловые источники света.
- •54.Фотоэффект.Ур. Эйнштейна
- •55.Масса и импульс фотона.Давление.
- •56.Эффект комптона
10.Постоянный электрический ток. Связь плотности тока со скоростью направленного движения носителей тока.
Электрический ток - упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил. За направление тока выбрано направление движения положительно заряженных частиц. Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.
Связь плотности тока со средней скоростью υ направленного
движения заряженных частиц
j = Q*n*υ ,
где Q - заряд частицы; п - концентрация заряженных частиц.
11.Закон Ома для однородного участка цепи. Закон Ома в дифференциальной форме.
Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи. I=U/R.
Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем: j=σ*E
j- вектор плотности тока, σ-удельная проводимость, Е-вектор напряженности электрического поля.
12.Работа и мощность тока.Закон Джоуля-Ленца.
В проводнике носители заряда движутся под действием электрического поля, а при переносе заряда совершается работа. W=U*Q. Измеряется в джоулях.
Мощность электрического тока — это отношение произведенной им работы ко времени в течение которого совершена работа. P=W/t=U*I.
Закон Джоуля — Ленца: количество тепла выделяемого в проводнике равно произведению квадрата силы тока, сопротивления проводника и времени протекания.
Q = I2*R*t
Характеризует тепловое действие электрического тока. При протекании тока по проводнику происходит превращение электрической энергии в тепловую, причем количество выделенного тепла будет равно работе электрических сил.
13.Источники тока. Сторонние силы. Эдс источника.
В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока.
СТОРО́ННИЕ СИ́ЛЫ в электродинамике, силы неэлектростатического происхождения, действующие на заряды со стороны источников тока и вызывающие перемещение электрических зарядов внутри источника постоянного тока. Сторонние силы совершают работу по разделению зарядов и поддержанию разности потенциалов на концах цепи.
Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.
14.Закон Ома для замкнутой цепи. Закон Ома для неоднородного участка цепи.
Закон
Ома для замкнутой цепи говорит о том
что. Величина тока в замкнутой цепи,
которая состоит из источника тока
обладающего внутренним сопротивлением,
а также внешним нагрузочным сопротивлением.
Будет равна отношению электродвижущей
силы источника к сумме внешнего и
внутреннего сопротивлений. I=
/(R+r).
Участок цепи, на котором действуют сторонние силы, называют неоднородным участком цепи.
Закон Ома для неоднородного участка цепи имеет вид: I=(фи1+фи2+ )/R.