
- •Билет 1 – (4) 1. Основы ос Unix, возможности, стандартизация
- •1.1 Отличительные черты ос unix
- •1.2 Основы архитектуры операционной системы unix
- •1.3 Ядро системы
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Последовательность действий по преобразованию адреса в защищенном режиме:
- •1.8 Обработка ошибок
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Особенности современных операционных систем (2, 28) – 122
- •Характеристики современных ос
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 3 (3, 28) – 144
- •3. Концепция слоистой операционной системы и системы на основе микроядра.
- •6.Подход на основе микроядра хорошо функционирует среди объектно-ориентированных ос (object-oriented operating system).
- •Билет 4
- •1. Владельцы файлов. Права доступа к файлам. Атрибуты файлов (4, 18) – 23
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 1 (4, 26) – 142
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •1. Неименованные каналы в ос unix (5) – 77
- •2. Взаимодействие процессов. Задача взаимного исключения. Алгоритм Деккера (5) – 147
- •3. Понятие процесса, модели процессов (5) – 132
- •1. Метаданные файлов в ос unix (7) – 36
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Описание процесса, таблица процесса (6) – 136
- •1. Процессы в ос unix. Типы процессов. (7, 23) – 56
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •3. Принципы построения ос (7, 19, 26) – 128
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •3. Концепция потока, как составной части процесса (8) – 139
- •1. Разработка программ в ос unix. Обработка ошибок, переменные окружения (9) – 11
- •2. Применение двоичных семафоров для решения задачи «производитель» - «потребитель» (буфер неограниченный) (9, 21)
- •3. Концепция виртуализации (9, 17)
- •1. Файлы, отображаемые в память (10) – 33
- •2. Применение семафоров для решения задачи «производитель» - «потребитель» с неограниченным буфером. Решение «спящий парикмахер». (10, 22) – 155
- •3. Подсистема управления памятью, требования, предъявляемые к ней (10)
- •Билет 11
- •1. Процессы в ос unix. Порождение процесса (11, 25) – 57
- •2. Применение общих семафоров для решения задачи «производитель-потребитель» с ограниченным буфером (11, 23) – 157
- •3. Виртуальная память. Задачи управления виртуальной памятью (11, 25)
- •1. Сигналы в ос unix. Их назначение и обработка (12) – 70
- •2. Взаимодействие процессов через переменные состояния. Пример приоритетного правила (12) – 157
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •1. Функции для работы с сигналами (13) – 70
- •2. Проблема тупиков. Алгоритм банкира (13)
- •3.Задача замещения
- •1. Файлы и файловая система в ос unix. Права доступа (3, 14) – 18
- •2. Задача взаимного исключения. Алгоритм Петерсона (14) – 148
- •3. Схемы распределения памяти
- •1. Файловая система в ос unix ext2 (15) – 51
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •Билет 16
- •1. Каналы в ос unix (16) – 80
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Организация защиты в процессорах ia32
- •1. Процессы в ос unix, системные вызовы wait, exit (17) – 60, 63
- •2. Монитороподобные средства синхронизации для решения задачи взаимного исключения (17) – 160
- •3. Концепция виртуализации (9, 17)
- •1. Владельцы файлов. Права доступа к файлам. Атрибуты файлов (4, 18) – 23
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Схемы распределения памяти (18, 24)
- •1. Взаимодействие процессов в ос unix, очереди сообщений (19) – 83
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •3. Принципы построения ос (7, 19, 26) – 128
- •1 Взаимодействие процессов в ос unix с применением семафоров (20) – 93
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •Механизмы поддержки многозадачности в процессорах ia32 (20)
- •1. Работа с файлами в ос unix. Системные вызовы (21) – 25
- •2. Применение двоичных семафоров для решения задачи «производитель» - «потребитель» (буфер неограниченный) (9, 21)
- •3. Страничная организация памяти в процессоре ia32
- •Билет 22
- •1. Взаимодействие процессов в ос unix. Разделяемая память (22) – 100
- •2. Применение семафоров для решения задачи «производитель» - «потребитель» с неограниченным буфером. Решение «спящий парикмахер». (10, 22) – 155
- •3. Организация защиты в процессорах ia32
- •Билет 23
- •1. Процессы в ос unix. Типы процессов. (7, 23) – 56
- •2. Применение общих семафоров для решения задачи «производитель-потребитель» с ограниченным буфером (11, 23) – 157
- •3.Задача замещения
- •1. Понятие потока в ос unix. Создание потока, завершение потока (24) – 106
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20, 24) - 152
- •3. Схемы распределения памяти (18, 24)
- •1. Процессы в ос unix. Порождение процесса (11, 25) – 57
- •2. Задача взаимного исключения. Алгоритм Петерсона
- •3. Виртуальная память. Задачи управления виртуальной памятью (11, 25)
- •Билет 26
- •1. Создание потока
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 1 (4, 26) – 142
- •3. Принципы построения ос (7, 19, 26) – 128
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 3 (3, 28) – 144
- •3. Особенности современных операционных систем (2, 28) – 122
Билет 22
1. Взаимодействие процессов в ос unix. Разделяемая память (22) – 100
Операции с разделяемой памятью позволяют двум и более процессам совместно использовать область физической памяти (общеизвестно, что обычно области данных любых двух программ совершенно отделены друг от друга). Чаще всего разделяемая память является наиболее производительным механизмом межпроцессного взаимодействия.
Для того, чтобы сегмент памяти мог использоваться совместно, он должен быть сначала создан при помощи системного вызова shmget. После создания сегмента разделяемой памяти процесс может подключаться к нему при помощи вызова shmat и затем использовать его для своих частных целей. Когда этот сегмент памяти больше не нужен, процесс может отключиться от него при помощи вызова shmdt.
Системный вызов shmget
Сегменты разделяемой памяти создаются при помощи вызова shmget.
Описание
#include <sys/shm.h>
int shmget(key_t key, size_t size, int permflags);
Этот вызов аналогичен вызовам msgget и semget. Наиболее интересным параметром вызова является size, который задает требуемый минимальный размер (в байтах) сегмента памяти. Параметр key является значением ключа сегмента памяти, параметр permflags задает права доступа к сегменту памяти и, кроме того, может содержать флаги IPC_CREAT и IPC_EXCL.
Операции с разделяемой памятью: вызовы shmat и shmdt
Сегмент памяти, созданный вызовом shmget, является участком физической памяти и не находится в логическом пространстве данных процесса. Для использования разделяемой памяти текущий процесс, а также все другие процессы, взаимодействующие с этим сегментом, должны явно подключать этот участок памяти к логическому адресному пространству при помощи вызова shmat:
Описание
#include <sys/shm.h>
void *shmat(int shmid, const void *daddr, int shmflags);
Вызов shmat связывает участок памяти, обозначенный идентификатором shmid (который был получен в результате вызова shmget) с некоторым допустимым адресом логического адресного пространства вызывающего процесса. Этот адрес является значением, возвращаемым вызовом shmat (в языке C такие адреса данных обычно представляются типом void *).
Параметр daddr позволяет программисту до некоторой степени управлять выбором этого адреса. Если этот параметр равен NULL, то участок подключается к первому доступному адресу, выбранному системой. Это наиболее простой случай использования вызова shmat. Если параметр daddr не равен NULL, то участок будет подключен к содержащемуся в нем адресу или адресу в ближайшей окрестности в зависимости от флагов, заданных в аргументе shmflags. Этот вариант сложнее, так как при этом необходимо знать расположение программы в памяти.
Аргумент shmflag может содержать два флага, SHM_RDONLY и SHM_RND, определенные в заголовочном файле <sys/shm.h>. При задании флага SHM_RDONLY участок памяти подключается только для чтения. Флаг SHM_RMD определяет, если это возможно, способ обработки в вызове shmat ненулевого значения daddr.
В случае ошибки вызов shmat вернет значение:
(void *)-1
Вызов shmdt противоположен вызову shmat и отключает участок разделяемой памяти от логического адресного пространства процесса (это означает, что процесс больше не может использовать его). Он вызывается очень просто:
retval = shmdt(memptr);
Возвращаемое значение retval является целым числом и равно 0 в случае успеха и -1 - в случае ошибки.
Системный вызов shmctl
Описание
#include <sys/shm.h>
int shmctl(int shmid, int command, struct shmid ds *shm_stat);
Этот вызов в точности соответствует вызову msgctl, и параметр command может, наряду с другими, принимать значения IPC_STAT, IPC_SET и IPC_RMID. В следующем примере этот вызов будет использован с аргументом command равным IPC_RMID.