
- •Билет 1 – (4) 1. Основы ос Unix, возможности, стандартизация
- •1.1 Отличительные черты ос unix
- •1.2 Основы архитектуры операционной системы unix
- •1.3 Ядро системы
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Последовательность действий по преобразованию адреса в защищенном режиме:
- •1.8 Обработка ошибок
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Особенности современных операционных систем (2, 28) – 122
- •Характеристики современных ос
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 3 (3, 28) – 144
- •3. Концепция слоистой операционной системы и системы на основе микроядра.
- •6.Подход на основе микроядра хорошо функционирует среди объектно-ориентированных ос (object-oriented operating system).
- •Билет 4
- •1. Владельцы файлов. Права доступа к файлам. Атрибуты файлов (4, 18) – 23
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 1 (4, 26) – 142
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •1. Неименованные каналы в ос unix (5) – 77
- •2. Взаимодействие процессов. Задача взаимного исключения. Алгоритм Деккера (5) – 147
- •3. Понятие процесса, модели процессов (5) – 132
- •1. Метаданные файлов в ос unix (7) – 36
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Описание процесса, таблица процесса (6) – 136
- •1. Процессы в ос unix. Типы процессов. (7, 23) – 56
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •3. Принципы построения ос (7, 19, 26) – 128
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •3. Концепция потока, как составной части процесса (8) – 139
- •1. Разработка программ в ос unix. Обработка ошибок, переменные окружения (9) – 11
- •2. Применение двоичных семафоров для решения задачи «производитель» - «потребитель» (буфер неограниченный) (9, 21)
- •3. Концепция виртуализации (9, 17)
- •1. Файлы, отображаемые в память (10) – 33
- •2. Применение семафоров для решения задачи «производитель» - «потребитель» с неограниченным буфером. Решение «спящий парикмахер». (10, 22) – 155
- •3. Подсистема управления памятью, требования, предъявляемые к ней (10)
- •Билет 11
- •1. Процессы в ос unix. Порождение процесса (11, 25) – 57
- •2. Применение общих семафоров для решения задачи «производитель-потребитель» с ограниченным буфером (11, 23) – 157
- •3. Виртуальная память. Задачи управления виртуальной памятью (11, 25)
- •1. Сигналы в ос unix. Их назначение и обработка (12) – 70
- •2. Взаимодействие процессов через переменные состояния. Пример приоритетного правила (12) – 157
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •1. Функции для работы с сигналами (13) – 70
- •2. Проблема тупиков. Алгоритм банкира (13)
- •3.Задача замещения
- •1. Файлы и файловая система в ос unix. Права доступа (3, 14) – 18
- •2. Задача взаимного исключения. Алгоритм Петерсона (14) – 148
- •3. Схемы распределения памяти
- •1. Файловая система в ос unix ext2 (15) – 51
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •Билет 16
- •1. Каналы в ос unix (16) – 80
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Организация защиты в процессорах ia32
- •1. Процессы в ос unix, системные вызовы wait, exit (17) – 60, 63
- •2. Монитороподобные средства синхронизации для решения задачи взаимного исключения (17) – 160
- •3. Концепция виртуализации (9, 17)
- •1. Владельцы файлов. Права доступа к файлам. Атрибуты файлов (4, 18) – 23
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 4 (1, 16, 18) – 146
- •3. Схемы распределения памяти (18, 24)
- •1. Взаимодействие процессов в ос unix, очереди сообщений (19) – 83
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •3. Принципы построения ос (7, 19, 26) – 128
- •1 Взаимодействие процессов в ос unix с применением семафоров (20) – 93
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20) - 152
- •Механизмы поддержки многозадачности в процессорах ia32 (20)
- •1. Работа с файлами в ос unix. Системные вызовы (21) – 25
- •2. Применение двоичных семафоров для решения задачи «производитель» - «потребитель» (буфер неограниченный) (9, 21)
- •3. Страничная организация памяти в процессоре ia32
- •Билет 22
- •1. Взаимодействие процессов в ос unix. Разделяемая память (22) – 100
- •2. Применение семафоров для решения задачи «производитель» - «потребитель» с неограниченным буфером. Решение «спящий парикмахер». (10, 22) – 155
- •3. Организация защиты в процессорах ia32
- •Билет 23
- •1. Процессы в ос unix. Типы процессов. (7, 23) – 56
- •2. Применение общих семафоров для решения задачи «производитель-потребитель» с ограниченным буфером (11, 23) – 157
- •3.Задача замещения
- •1. Понятие потока в ос unix. Создание потока, завершение потока (24) – 106
- •2. Синхронизирующие примитивы. Решение задачи взаимного исключения с использованием семафоров (7, 8, 19, 20, 24) - 152
- •3. Схемы распределения памяти (18, 24)
- •1. Процессы в ос unix. Порождение процесса (11, 25) – 57
- •2. Задача взаимного исключения. Алгоритм Петерсона
- •3. Виртуальная память. Задачи управления виртуальной памятью (11, 25)
- •Билет 26
- •1. Создание потока
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 1 (4, 26) – 142
- •3. Принципы построения ос (7, 19, 26) – 128
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 2 (2, 6, 15, 27) – 143
- •3. Функции микроядра (4, 12, 15, 27) – 126
- •2. Взаимодействие процессов. Задача взаимного исключения. Вариант 3 (3, 28) – 144
- •3. Особенности современных операционных систем (2, 28) – 122
Билет 11
1. Процессы в ос unix. Порождение процесса (11, 25) – 57
Когда интерпретатор shell запускает новую программу, осуществляется порождение нового процесса, а затем загружается требуемая программа, и операционная система, соответственно, предоставляет для этих действий два системных вызова. Первый - для создания процесса, а другой - для запуска новой программы.
Для порождения процесса имеется специальный системный вызов fork.
Прототип:
#include <sys/types.h>
#include <unistd.h>
pid_t fork(void);
Пример:
/* создаёт один дочерный процесс */
main( )
{ pid_t pid;
printf(“Функционирует один процес\n”);;
pid = fork( );
if (pid == 0) printf(“\nВыполняется процесс-сын\n”);
else if (pid > 0) printf(“\nВыполняется процесс-отец\n”);
else printf(“Ошибка при создании процесса\n”);
}
Процесс до выполнения fork()
Процесс-сын
Процесс-отец
Fork>0
Fork == 0
Новый процесс порождается с помощью системного вызова fork. Порожденный процесс (процесс-сын) является точной копией процесса, выполнившего этот системный вызов, то есть родительского процесса. Процессу сыну передаются следующие атрибуты родительского процесса:
- идентификаторы пользователя и группы;
- переменные окружения;
- диспозиция сигналов и их обработчики;
- текущий и корневой каталог;
- маска создания файлов;
- все файловые дескрипторы, включая файловые указатели;
- управляющий терминал.
Виртуальная память процесса-сына не отличается от образа родительской. Такие же сегменты кода, данных, стека, разделяемой памяти и других видов памяти.
После вызова fork уже развиваются два процесса. Родительский и дочерний процесс, оба выполняют одну и ту же команду, но по разным ветвям. Между порождающим и порожденным процессом имеются отличия:
- процессу-сыну присваивается уникальный идентификатор PID;
- родительские идентификаторы для процесса-отца и процесса-сына различны - у процесса-сына есть собственный идентификатор процесса-отца;
- значение, возвращаемое системным вызовом fork, различно для процесса-отца и процесса-сына. Отцу возвращается значение, равное идентификатору PID сына, а процессу-сыну возвращается значение 0. При ошибке возвращается значение –1.
При этом могут обнаруживаться две ошибочные ситуации, которые обнаруживаются в специальной переменной errno.
2. Применение общих семафоров для решения задачи «производитель-потребитель» с ограниченным буфером (11, 23) – 157
Производитель и потребитель связаны через буфер ограниченной емкости в N порций. ЧПП - число пустых порций.
begin
integer ЧПБ, ЧПП, РБ;
ЧПБ:=0;
ЧПП:=N;
РБ:=1;
parbegin
производитель: begin
n1: производство новой порции;
P(ЧПП);
P(РБ);
добавление порции к буферу;
V(РБ);
V(ЧПБ);
goto n1;
end;
потребитель: begin
n2: P(ЧПБ);
P(РБ);
взятие порции из буфера;
V(РБ);
V(ЧПП);
обработка взятой порции;
goto n2;
end;
parend;
end;
И производитель и потребитель решают через РБ задачу взаимного исключения. Проблема производителя: нельзя писать в заполненный буфер. Проблема потребителя: нельзя читать из пустого буфера. Производитель решает свою проблему с использованием общего семафора ЧПП (число пустых порций), а потребитель через ЧПБ (число порций в буфере).