Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
107-108_shpory_po_KhIMII_2013.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.16 Mб
Скачать

6.Сопряжение связей

Сопряжение – это образование в молекуле единого

делокализованного электронного облака в результате

перекрывания негибридизованных р-орбиталей

Условия π,π-сопряжения

1) Кратные связи должны быть разделены одной (и только

одной) простой связью

2) Максимальное сопряжение достигается, когда обе кратные

связи лежат в одной плоскости

3) Если по пространственным соображениям две кратные связи

не могут лежать в одной плоскости, то сопряжение между

ними уменьшается с увеличением угла между плоскостями

этих связей

4) >С=С=С< аллены >С=С=О кетены

Сопряжение невозможно

делокализованные π-связи локализованные π-связи

Несопряженная система CH2=CH-СН2-CH=CH2

Сопряженная система

CH2=CH-CH=CH2

Система сопряжeния может быть открытой или замкнутой и

содержать атом (C, N, O, S, Cl и т.д.) с неподеленной электронной

парой (формулы I, II), с неспаренным электроном (III) или с

вакантной р-АО

Ароматичность — особое свойство некоторых химических соединений, благодаря которому сопряженное кольцо ненасыщенных связей проявляет аномально высокую стабильность; большую чем та, которую можно было бы ожидать только при одном сопряжении.

Ароматичность не имеет непосредственного отношения к запаху органических соединений, и является понятием, характеризующим совокупность структурных и энергетических свойств некоторых циклических молекул, содержащих систему сопряженных двойных связей. Термин «ароматичность» был предложен потому, что первые представители этого класса веществ обладали приятным запахом.

К ароматическим соединениям относят обширную группу молекул и ионов разнообразного строения, которые соответствуют критериям ароматичности.

Кроме бензольного кольца и его конденсированных аналогов ароматические свойства проявляют многие гетероциклы — гетарены: пиррол, фуран,тиофен, пиридин, индол, оксазол и другие. При этом в сопряженную систему шестичленных гетероциклов гетероатом отдает один электрон (по аналогии с углеродом), в 5-атомных — неподеленную электронную пару.

Одним из простейших ароматических соединений является бензол.

Эти соединения играют большую роль в органической химии и обладают многими химическими свойствами, свойственными только этому классу соединений.

Ароматичность: особый вид сопряжения

Химические свойства ароматических соединений

• Высокая стабильность

• Преимущественно вступают в реакции замещения

Циклическая сопряженная система молекулы

Условия возникновения

1) Система должна быть циклической (карбоциклы, гетероциклы)

2) Система должна быть плоской

3) Все атомы цикла должны находиться в состоянии sp2-

Гибридизации

Примеры: бензол

Гем, хлорофилл, Вит В 12

Производные ароматических соединений входят в состав нуклеиновых кислот:

Азотистые основания Азотистые основания – производные ароматических гетероциклическихсоединений – пурина и

7.По теории Бренстеда (протолитической теории) кислотность и основность соединений связывается с переносом протона Н+. Кислота и основание образуют сопряженную кислотно-основную пару, в которой чем сильнее кислота, тем слабее сопряжен¬ное ей основание, и напротив, чем сильнее основание, тем слабее сопряженная ему кислота.

Кислоты Бренстеда (протонные кислоты) – нейтральные молекулы или ионы, способные отдавать протон (доноры протонов).

Основания Бренстеда – нейтральные молекулы или ионы, способные присоединять протон (акцепторы протонов).

Кислотность и основность являются не абсолютными, а относительными свойствами соединений: кислотные свойства обнаруживаются лишь в присутствии основания; основные свойства – только в присутствии кислоты. В качестве растворителя при изучении кислотно-основных равновесий обычно используется вода.

Кислоты – СН, ОН, NН, очень слабые кислотные св-ва проявляют алкины

Спирты амфотерные соединения.

Нейтрализа́ция (от лат. neuter — ни тот, ни другой) — взаимодействие кислот с основаниями, в результате которого образуются соли и вода.

  

При Н. слабого основания сильной кислотой реакция раствора становится кислой. Водородный показатель (pH) раствора лишь приближается к 7.

Взаимодействие слабой кислоты и сильного основания:

CH3COOH + NaOH → CH3COONa + H2O

CH3COOH + NH4OH → CH3COONH4 + H2O

Амфотерными называют соединения, которые в зависимости от условий могут быть как донорами китионов водорода и проявлять кислотные свойства, так и их акцепторами, то есть проявлять основные свойства.

В рамках протолитической теории Брёнстеда-Лоури проявление амфотерности рассматривается как способность протолита выступать донором и акцептором протона. Например, для воды амфотерность проявляется как автопротолиз[4]:

H2O + H2O H3O+ + OH-

Амфолитами также будут вещества, имеющие в своём составе функциональные группы, способные быть донорами и акцепторами протонов. Например, к амфотерным органическим электролитам относятся белки, пептиды и аминокислоты. Так аминокислоты имеют в своём составе, по крайней мере, карбоксильную группу –COOH и аминогруппу –NH2. В растворе эти группы подвергаются частичной ионизации:

R–COOH + H2O R–COO– + H3O+

R–NH2 + H2O R–NH3+ + OH-

Таким образом, молекула аминокислоты находится в двух равновесных формах, заряженной (цвиттер-ион) и незаряженной. В этих комбинациях R–COOH и R–NH3+ являются потенциальными кислотами (донорами протонов, катионов), а R–COO– и R–NH2 – сопряженными потенциальными основаниями (акцепторами протонов, катионов).

8.По теории Бренстеда (протолитической теории) кислотность и основность соединений связывается с переносом протона Н+. Кислота и основание образуют сопряженную кислотно-основную пару, в которой чем сильнее кислота, тем слабее сопряжен¬ное ей основание, и напротив, чем сильнее основание, тем слабее сопряженная ему кислота.

Кислоты Бренстеда (протонные кислоты) – нейтральные молекулы или ионы, способные отдавать протон (доноры протонов).

Основания Бренстеда – нейтральные молекулы или ионы, способные присоединять протон (акцепторы протонов).

Кислотность и основность являются не абсолютными, а относительными свойствами соединений: кислотные свойства обнаруживаются лишь в присутствии основания; основные свойства – только в присутствии кислоты. В качестве растворителя при изучении кислотно-основных равновесий обычно используется вода.

Кислоты – СН, ОН, NН, очень слабые кислотные св-ва проявляют алкины

Спирты амфотерные соединения.

9.Большенство химических реакций протекают в несколько стадий, детальное написание всех стадий называется – механизмом химич р-й. Общая скорость химической реакции лимитируется – скоростью самой медленной стадии.

Реакционная способность всегда должна рассматриваться только по отношению к реакционному партнеру. Само вещество при этом называют субстратом, а действующее на него соединение (реакционную частицу) – реагентом. Субстратом, как правило, называют то вещество, в котором у атома углерода происходит разрыв старой и образование новой связи. В биохимических процессах реагентами считают ферменты, а вещества, подвергающиеся их действию, субстратами. В ходе химического превращения обычно затрагивается не вся молекула, а только ее часть – реакционный центр.

Типы реакций в органической химии

Многообразие органических реакций приводит к целесообразности их классификации по следующим признакам:

1. По электронной природе реагентов (нуклеофильные, электрофильные, свободнорадикальные реакции).

Нуклеофильные реагенты Х- – это одно- или многоатомные анионы или молекулы, имеющие центры с повышенной электронной плотностью. К ним относятся такие анионы и молекулы, как HO-, RO-, Cl-, Br-, RCOO-, CN-, R-, NH3, C2H5OH и т.д.

Электрофильные реагенты Х+ – это катионы, простые или сложные моле¬кулы, которые сами по себе или же в присутствии катализатора обладают повышенным сродством к электронной паре или отрицательно заряженным центрам молекул. К ним относятся катионы H+, Cl+, +NO2, +SO3H, R+ и молекулы со свободными орбиталями AlCl3, ZnCl2 и т.п.

Свободные радикалы Х• – это электронейтральные частицы, имеющие неспаренный электрон, например: Cl•, •NO2.

2. По изменению числа частиц в ходе реакции (замещение, присоединение, отщепление, разложение, ОВР и др.).

В случае реакций замещения в молекуле один атом (или группа атомов) замещается другим атомом (или группой атомов), в результате чего образуются новые соединения:

СН3–СН3 + С12  СН3–СН2С1 + НC1

При протекании реакций присоединения из двух (или нескольких) молекул образуется одно новое вещество:

CH2 = CH2 + HBr → CH2Br–СH3

В результате реакции отщепления образуется новое органическое вещество, содержащее кратную связь:

СН3–СН2С1 + NaOH(спиртовой р-р)  СН2 = СН2 + NaC1 + Н2О

Реакции разложения приводят к образованию из одного вещества двух или более веществ более простого строения:

НСООН → СО2 + Н2

3. По частным признакам (гидратация и дегидратация, гидрирование и дегидрирование, нитрование, сульфирование, галогенирование, ацилирование, алкилирование, карбоксилирование и декарбоксилирование, енолизация, замыкание и размыкание циклов, изомеризация, окислительная деструкция, пиролиз, полимеризация, конденсация и др.).

4. По механизмам элементарных стадий реакций (нуклеофильное замещение SN, электрофильное замещение SE, свободнорадикальное замещение SR, парное отщепление, или элиминирование Е, нуклеофильное или электрофильное присоединение AdE и AdN и т. д.).

10.По изменению числа частиц в ходе реакции (замещение, присоединение, отщепление, разложение, ОВР и др.).

В случае реакций замещения в молекуле один атом (или группа атомов) замещается другим атомом (или группой атомов), в результате чего образуются новые соединения:

СН3–СН3 + С12  СН3–СН2С1 + НC1

При протекании реакций присоединения из двух (или нескольких) молекул образуется одно новое вещество:

CH2 = CH2 + HBr → CH2Br–СH3

В результате реакции отщепления образуется новое органическое вещество, содержащее кратную связь:

СН3–СН2С1 + NaOH(спиртовой р-р)  СН2 = СН2 + NaC1 + Н2О

Реакции разложения приводят к образованию из одного вещества двух или более веществ более простого строения:

НСООН → СО2 + Н2 протекает разрыв связи С-С

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]