
- •1.Основные принципы построения эвм(принцип фон Неймана)
- •2.Архитектура системной платы пэвм
- •3.Классификация устройств памяти.
- •4.Организация банков памяти. Модули оперативной памяти пэвм.
- •5. Модемы. Способы модуляции символов
- •6.Структурная схема микропроцессора. Назначение микропроцессора. Назначение основных блоков.
- •7.Структура команды представления данных микропроцессора.
- •8.Регистры общего назначения.
- •9.Алу. Регистр флагов.
- •10.Устройство управления микропроцессора.
- •11.Режимы работы микропроцессора. Сегментированная модель памяти.
- •12. Формирование физического адреса в реальном и защищенном режимах работы микропроцессора. Защищенный режим (protected mode)
- •13.Аппаратные интерфейсы пк и их основные характеристики.
- •14.Прерывание. Виды прерывания. Вектор прерывания.
- •15.Организация озу: линейная, сегментированная, страничная.
- •Понятие о сегментированной модели памяти
- •Понятие о страничной модели памяти
- •16 Внешняя память. Параметры дисковых накопителей. Интерфейсы ata(ide), scsi, sata.
- •17 Принтеры. Назначение. Классификация. Способы формирования изображения.
- •18 Сканеры. Принцип работы. Метод считывания изображения. Характеристики.
- •19 Классификация технических средств информатизации по назначению.
- •20 Классификация сетей. Базовые сетевые топологии.
- •21 Семиуровневая эталонная модель взаимодействия открытых систем.
- •22 Сетевая технология ethernet.
- •23 Виды сетевого оборудования.
- •24 Звуковая карта. Устройство и принципы действия.
- •25 Основные компоненты видеокарты и их назначение.
- •26 Устройство элт. Технология элт типа «теневая маска», «щелевая решетка», «дельтовидная маска».
- •27 Стек протоколов tcp/ip.
- •7Прикладной
- •1Физический
- •28Стек протоколов spx/ipx (характеристика, структура пакета, достоинства и недостатки)
- •29Классификация сетевых адресов. Адресация в ip-сетях. Классы ip- адресов.
- •1 Понятие консалтинга в области ит.
- •2 Цели и этапы разработки консалтинговых проектов.
- •3 Понятие и основные принципы структурного анализа.
- •4 Жизненный цикл программного изделия (этапы жц).
- •5 Модели Жизненного Цикла.
- •6 Диаграммы потоков данных (dfd). Нотация Йодана (основные понятия, назначение символов).
- •7 Диаграммы потоков данных (dfd). Нотация Гейна - Йодана (основные понятия, назначение символов).
- •8 Контекстная диаграмма и детализация процессов.
- •9 Декомпозиция данных на dfd (типы объектов).
- •10Расширение dfd для системы реального времени.
- •11 Содержания словаря данных.
- •12 Обеспечивающие подсистемы автоматизированных информационных систем (назначение и краткая характеристика).
- •13 Методы задания спецификаций процессов (пред- и постусловия, требования к спецификациям).
- •14 Структурированный естественный язык, используемый для задания спецификации объектов (основные символы, управляющие структуры).
- •15Среды быстрого проектирования
- •16Диаграммы «сущность – связь». Нотация Баркера (назначение, символы).
- •17Диаграммы «сущность – связь». Нотация Чена (назначение, символы
- •18Проектирование бд методом нормализации отношений.
- •19Sadt – технология структурного анализа и проектирования.
- •20Реляционные бд. Основные понятия (табличное представление данных, кортежи, поля таблицы)
- •21Явная и неявная избыточность. Функциональные зависимости между атрибутами (т.Е. Данные не должны повторяться в таблицах, справочная информация не должна фигурировать в таблицах данных)
- •22Основы ооп (инкапсуляция, наследование, полиморфизм).
- •23Понятие класса и его составляющих: имя, свойство, метод
- •24Логические модели данных: сетевая, иерархическая, реляционная.
- •25Трансляторы. Разновидности трансляторов
- •26Уровневая классификация языков программирования.
- •27Состав и назначение основных компонентов интегрированной системы программирования Borland Delphi 7.
- •28 Режимы доступа к элементам класса (public, private, protected).
- •29 Этапы разработки приложений «Клиент – Сервер»
- •30 Состав, структура и функциональные особенности case-средств.
14.Прерывание. Виды прерывания. Вектор прерывания.
Прерывание – приостановление работы одной программы и передача управления другой.
Виды: программные, аппаратные.
Вектор прерывания:
Вызов
прерывания прерывание вывод из прерывания
15.Организация озу: линейная, сегментированная, страничная.
Микропроцессор аппаратно поддерживает несколько моделей использования оперативной памяти:
сегментированную модель
страничную модель
Понятие о сегментированной модели памяти
Память для программы делится на непрерывные области памяти, называемые сегментами.
Сегменты - это логические элементы программы.
Сама программа может обращаться только к данным, которые находятся в этих сегментах.
Сегмент представляет собой независимый, поддерживаемый на аппаратном уровне блок памяти.
Сегментация - механизм адресации, обеспечивающий существование нескольких независимых адресных пространств как в пределах одной задачи, так и в системе в целом для защиты задач от взаимного влияния.
Достоинства:
1) общий объем виртуальной памяти превосходит объем физической памяти
2) возможность размещать в памяти как можно больше задач (до определенного предела) Þ увеличивает загрузку системы и более эффективно используются ресурсы системы
Недостатки:
1) увеличивается время на доступ к искомой ячейке памяти, т.к. должны вначале прочитать дескриптор сегмента, а потом уже, используя его данные, можно вычислить физический адрес (для уменьшения этих потерь используется кэширование - дескрипторы, с которыми работа идет в данный момент размещаются в сверхоперативной памяти - в специальных регистрах процессора);
2) фрагментация;
3) потери памяти на размещение дескрипторных таблиц
4) потери процессорного времени на обработку дескрипторных таблиц.
Сегментированная модель памяти поддерживается и в реальном, и в защищенном режимах работы микропроцессора.
Понятие о страничной модели памяти
Это надстройка над сегментной моделью.
ОП делится на блоки фиксированного размера 4 Кб (должно быть число, кратное степени двойки, чтобы операции сложения можно было бы заменить на операции конкатенации).
Каждый такой блок называется страницей.
Основное применение этой модели связано с организацией виртуальной памяти.
Говорят, что память разбивается на физические страницы, а программа - на виртуальные страницы.
Трансляция (отображение) виртуального адресного пространства задачи на физическую память осуществляется с помощью таблицы страниц.
Для каждой текущей задачи создается таблица страниц.
Диспетчер памяти для каждой страницы формирует соответствующий дескриптор. Дескриптор содержит так называемый бит присутствия.
Если он = 1, это означает, что данная страница сейчас размещена в ОП.
Если он = 0, то страница расположена во внешней памяти.
Защита страничной памяти основана на контроле уровня доступа к каждой странице.
Каждая страница снабжается кодом уровня доступа (только чтение; чтение и запись; только выполнение). При работе со страницей сравнивается значение кода разрешенного уровня доступа с фактически требуемым. При несовпадении операции с разрешенной - работа программы прерывается.
Страничная модель памяти поддерживается только в защищенном режиме работы микропроцессора.
Основное достоинство страничного способа распределения памяти -
минимально возможная фрагментация (эффективное распределение памяти).
Недостатки:
1) потери памяти на размещение таблиц страниц
2) потери процессорного времени на обработку таблиц страниц (диспетчер памяти).
3) Программы разбиваются на страницы случайно, без учета логических взаимосвязей, имеющихся в коде Þ межстраничные переходы осуществляются чаще, чем межсегментные + трудности в организации разделения программных модулей между выполняющими процессами.