
- •Випуcкнa poбoтa бaкaлaвpa
- •Н aцioнaльний aвiaцiйний університет
- •Нa випуcкну poбoту бaкaлaвpa
- •Розділ 1 характеристика валютного ринку та методів прогнозування валютних курсів
- •1.1 Введення в міжнародний валютний ринок forex
- •1.2 Проблема прогнозованності валютного ринку
- •1.3 Аналіз математичних методів прогнозування валютних курсів
- •Висновки до розділу 1
- •Розділ 2 застосування теорії нечітких множин для прогнозування валютних курсів
- •2.1 Формалізація задачі прогнозування валютних курсів на основі теорії нечітких множин
- •6. Аналіз отриманих результатів
- •2.2 Моделювання процесу прогнозування та вирішення задачі в середовищі matlab
- •2.3 Оцінка адекватності отриманих результатів прогнозування валютних курсів на основі запропонованого методу
- •Висновки до розділу 2
- •Висновки
- •Списoк викoристaних джeрeл
Висновки до розділу 1
У першому розділі випускної роботи проведено аналіз тимчасових фінансових рядів та зроблено внесок, що належить сучасна наука не може відчувати себе повноправною господинею у цій сфері. Ця обставина в сукупності з перспективою практично необмеженого заробітку є основною причиною високого інтересу до теми фінансових ринків.
Проаналізувавши щоденний обсяг операцій по валютному ринку, ми дійшли висновку, що він набагато перевищує аналогічний показник по іншим ринкам. Щоденний обсяг ринку FOREX становить 3-4 трильйони доларів США. У даному розділі наведена характеристика ринку міжбанківського обміну валюти за вільними цінами FOREX, розповідається історія його виникнення та основні тенденції розвитку за умов сучасного стану економіки.
У роботі зазначено, що основною проблемою прогнозованості валютного курсу є те, що на ринку FOREX одночасно присутні мільйони гравців з різних країн різних континентів. Кожен з них працює з однією або декількома валютними парами. Таким чином, в кожен момент часу на ринку є учасники, що відкривають довгі позиції (угода на купівлю), і ті, хто відкриває короткі позиції (угода на продаж).
Показано що валютний ринок розглядається за допомогою фундаментального та технічного аналізу, крім цього валютним курсам, як і будь-яким часовим рядам належать певні властивості, такі як: тренд, сезонність, стаціонарність.
Наведені основні методи прогнозування часових рядів, з точки зору лінійного та нелінійного підходу. На основі цього було зроблено висновок, що в рамках лінійного підходу можемо виокремити моделі авторегресії та ковзного середнього та модель Бокса-Дженкінса (ARIMA). Що стосується нелінійного підходу, то він передбачає застосування теорії нейронних мереж, та наводяться основні її переваги.
Розділ 2 застосування теорії нечітких множин для прогнозування валютних курсів
2.1 Формалізація задачі прогнозування валютних курсів на основі теорії нечітких множин
Суть завдання полягає в тому, щоб, знаючи динаміку зміни курсової вартості продажу валюти (у нашому випадку американського долару) за фіксований інтервал часу, передбачити значення її курсової вартості на певний момент в майбутньому. При цьому характерною особливістю динаміки зміни курсу є наявність двох основних тенденцій в коливаннях відповідних цін:
1) спостерігається загальне довгострокове підвищення курсової вартості, пов'язане з величиною інфляції.
2) спостерігається короткострокове коливання цін, пов'язане з цілою низкою випадкових чинників, адекватне уявлення яких в тій чи іншій формальній моделі навряд чи можливо.
У цілому коливання обумовлені факторами, пов'язаними із загальним станом національної і світової економіки (динаміка інфляції, безробіття, процентні ставки). Якщо глобальна тенденція зміни курсу валюти все-таки визначається станом економіки країни, в першу чергу, привабливістю переведення капіталу в валюту цієї країни (попит), то короткочасна реакція ринку на ті чи інші показники практично не пов'язана з економікою.
Для вирішення даної задачі застосовуються різні моделі технічного аналізу. У той же час наявність неявних тенденцій у динаміці зміни курсової вартості валют дозволяє застосувати модель адаптивних нейро-нечітких мереж.
Вперше термін нечітка логіка (fuzzy logic) був введений американським професором Лотфі Заде в 1965 році в роботі "Нечіткі множини" в журналі "Інформатика і управління".
У Японії цей напрямок переживає справжній бум. Тут функціонує спеціально створена лабораторія Laboratory for International Fuzzy Engineering Research (LIFE). Програмою цієї організації є створення більш близьких людині обчислювальних пристроїв. LIFE об'єднує 48 компаній, в числі яких знаходяться: Hitachi, Mitsubishi, NEC, Sharp, Sony, Honda, Mazda, Toyota. Із зарубіжних (Не Японських) учасників LIFE можна виділити: IBM, Fuji, Xerox, а також до діяльності LIFE проявляє інтерес NASA.
Міць і інтуїтивна простота нечіткої логіки як методології вирішення проблем гарантує її успішне використання у вбудованих системах контролю та аналізу інформації. При цьому відбувається підключення людської інтуїції і досвіду оператора.
Системи з нечіткою логікою доцільно застосовувати для:
складних процесів,
коли відсутня проста математична модель;
якщо експертні знання про об'єкт або про процес можна сформулювати тільки в лінгвістичній формі.
Основні недоліки систем з нечіткою логікою пов'язані з тим, що:
початковий набір нечітких правил формулюється експертом-людиною і може виявитися неповним або суперечливим;
вигляд і параметри функції приналежності, що описують вхідні і вихідні змінні системи, вибираються суб'єктивно і можуть виявитися не цілком відображають реальну дійсність.
Але ці недоліки можна подолати, при поєднанні з теорією нечітких множин нейронної мережі.
Для багатьох економістів, добре знайомих з економетрикою і поверхнево знайомих з теорією нейромережевих обчислень, нейронна мережа представляється подобою «чорного ящика», в який необхідно завантажити вхідну інформацію (вхід), щоб отримати якийсь бажаний результат (вихід).
Включення концепції нечіткої логіки в нейронні мережі дає можливість гібридній системі мати справу з людиноподібним процесом міркувань, закладати в інформаційне поле нейронної мережі апріорний досвід експертів-економістів, використовувати нечітке уявлення інформації, витягати знання з вхідного потоку економічних показників, а інтелектуальні засоби аналізу дозволяють оптимізувати витрати на модифікацію та експлуатацію корпоративного сайту суб'єкта ринкових відносин.
Штучні нейронні мережі (ШНМ) — математичні моделі, а також їхня програмна та апаратна реалізація, побудовані за принципом функціонування біологічних нейронних мереж — мереж нервових клітин живого організму. Системи, архітектура і принцип дії базується на аналогії з мозком живих істот. Ключовим елементом цих систем виступає штучний нейрон як імітаційна модель нервової клітини мозку — біологічного нейрона. Цей термін виник при вивченні процесів, які відбуваються в мозку, та при спробі змоделювати ці процеси. Першою такою спробою були нейронні мережі Маккалока і Піттса. Як наслідок, після розробки алгоритмів навчання, отримані моделі стали використовуватися в практичних цілях: в задачах прогнозування, для розпізнавання образів, в задачах керування та інші.
Включення концепції нечіткої логіки в нейронні мережі дає можливість гібридній системі мати справу з людиноподібним процесом міркувань, закладати в інформаційне поле нейронної мережі апріорний досвід експертів-економістів, використовувати нечітке уявлення інформації, витягати знання з вхідного потоку економічних показників, а інтелектуальні засоби аналізу дозволяють оптимізувати витрати на модифікацію та експлуатацію корпоративного сайту суб'єкта ринкових відносин.
Об'єднання можливостей нейронних мереж і нечіткої логіки є найбільш перспективним підходом до організації систем інтелектуального аналізу економічних даних. Системи нечіткої логіки компенсують дві основні «непрозорості» нейронної мережі в поданні знань та пояснень результатів роботи інтелектуальної системи, тобто нечітка логіка найкращим чином доповнює нейронні мережі.
Нечітка логіка дозволяє формалізувати якісну інформацію, отриману від експертів-економістів для конкретної сфери застосування, і представити сукупність отриманих знань у вигляді системи нечітких правил логічного висновку, що дозволяють аналізувати висновки, отримані в процесі роботи гібридної інтелектуальної системи.
Нейронні мережі дають можливість відобразити алгоритми нечіткого логічного висновку в структурі, вводячи в інформаційне поле нейронної мережі інформацію, отриману від експертів-економістів.
Знання кваліфікованих економістів для конкретної предметної області, представлені у формі нечітких правил логічного висновку, можуть бути прозорим способом відображені в структурі нейро-нечіткої мережі. Навчання нечіткої нейронної мережі дозволяє не тільки налаштувати ваги зв'язків (тобто відкоригувати достовірність нечітких правил логічного висновку), але й усунути суперечливість системи нечітких правил в цілому. У разі відсутності вихідної інформації з даної предметної області, але при достатньому обсязі навчальної вибірки нейро-нечітка мережа автоматично перетворює приховані в аналізованих економічних показниках закономірності в базу знань у вигляді системи правил нечіткого логічного висновку.
Сформована подібним чином база знань автоматично коригується в процесі навчання нейро-нечіткої мережі виходячи з реальних значень аналізованих економічних показників і результати корекції можуть бути піддані подальшому аналізу.[22]
Основна ідея, покладена в основу моделі гібридних мереж, полягає в тому, щоб використовувати існуючу вибірку даних для визначення параметрів функцій належності, які найкраще відповідають деякої системі нечіткого виводу. При цьому для знаходження параметрів функцій належності використовуються відомі процедури навчання нейронних мереж.
Завдання прогнозування валютних цін на фінансовому ринку, типова в практиці аналізу та прогнозування, буде реалізована в середовищі розробки MATLAB Fuzzy Logic Toolbox, зокрема ANFIS.
У пакеті Fuzzy Logic Toolbox системи MATLAB гібридні мережі реалізовані у формі так званої адаптивної системи нейро-нечіткого виводу ANFIS. З одного боку, гібридна мережа ANFIS являє собою нейронну мережу з єдиним виходом і декількома входами, які представляють собою нечіткі лінгвістичні змінні. При цьому терми вхідних лінгвістичних змінних описуються стандартними для системи MATLAB функціями належності, а терми вихідної змінної представляються лінійної або постійною функцією приналежності. Редактор ANFIS дозволяє створювати або завантажувати конкретну модель адаптивної системи нейро-нечіткого виводу, виконувати її навчання, візуалізувати її структуру, змінювати і налаштовувати її параметри, а також використовувати налаштовану мережу для отримання результатів нечіткого виводу.
Під назвою адаптивної нейро-нечіткої системою виводу - ANFIS (Adaptive Neuro-Fuzzy Inference System) відома спеціалізована нейромережева структура, що характеризується хорошою збіжністю і орієнтована на витяг знань у вигляді системи нечітких правил з даних навчальної вибірки. ANFIS - функціональний еквівалент нечіткої моделі виведення за алгоритмом Sugeno.[23]
При прогнозуванні валютних ринків за допомогою нечітких нейронних мереж в якості вхідної інформації можуть виступати: значення курсів, динаміка їх змін, а також інші ринкові показники.
Як інший варіант ми можемо використовувати інший спосіб введення даних, який полягає в тому, що представлення вхідних образів грунтуються не на зростанні і зміні котирувань, а на їх прирості, тобто процентній зміні до попереднього періоду. У такому випадку формула переходу буде мати наступний вигляд:
(2.1)
або
(2.2)
Якщо при аналізі статистичної залежності даних вхідного образу з'ясується, що прирости також впливають один на одного, то взяття логарифма від ставлення цієї котирування і попередньої, як правило, володіє найбільшою статистичної незалежністю.
Існує ще один спосіб представлення вхідних даних, побудований за принципом експертних оцінок або нечіткої логіки. При методі експертних оцінок дослідник має право сам вхідним образам ставити у відповідність числа від 0 до 1, згідно з прийнятими їм правилами. Даний метод може виявитися досить точним при кваліфікованому підході, однак вимагає великих затрат часу, адже метою дослідника залишається передача найбільш ресурсоємних завдань техніці. Для вирішення даної задачі підходить теорія нечіткої логіки. Скажемо кілька слів про саму теорії перед тим, як перейти до її застосування для перетворення вхідних даних.
Сучасні обчислювальні машини побудовані за принципом чіткої логіки, в той час як людська розумова система діє за принципом нечіткої логіки. Сенс її полягає в здатності суджень, віднесенню об'єктів і явищ до класів, в яких немає чітких меж. Повертаючись до задачі, відзначимо, що експертні оцінки про кожен об'єкт можуть бути замінені перетвореннями з розділу нечіткої логіки. Як можна переконатися, ці поняття суто індивідуальні, хоча між судженнями різних дослідників можуть мати багато схожого. Логічним буде запровадити не лише абсолютні критерії, а й значення попередніх даних, щоб врахувати відносність понять. Шляхом нескладних перетворень (найкраще ввести вагові коефіцієнти, які допоможуть перетворити дані для нейронної мережі) отримуємо дані для входу нейронної мережі.
Розіб'ємо завдання для нейромережі на пункти:
Постановка задачі
2. Збір даних для входу і виходу
3. Перетворення даних під нейронну мережу
4. Вибір конфігурації нейронної мережі
5. Навчання нейронної мережі