- •Синхронизация процессов и цепочек
- •Венгерская нотация, ссылки и ресурсы
- •Стандартные кисти, иконки, курсоры
- •Пример:
- •Введение в ресурсы
- •Курсоры, пиктограммы и растровые изображения
- •Работа с текстом
- •Работа с мышью
- •Ресурс панель диалога
- •Основные понятия машинной графики
- •Рассмотрим такие примитивы, как вершина, отрезок, воксель и модели, строящиеся на их основе, а также функциональные модели. Полигональные модели
- •Воксельные модели
- •Поверхности свободных форм (функциональные модели)
- •Проекции
- •Различают следующие проекции.
- •Алгоритм Коэна - Сазерленда отсечения прямоугольной областью
- •Метод дихотомии
- •Задача удаления невидимых линий и поверхностей
- •Удаление нелицевых граней многогранника. Алгоритм Робертса
- •Алгоритм Варнока
- •Алгоритм Вейлера-Азертона
- •Метод z-буфера
- •Методы приоритетов. Алгоритм художника.
- •Алгоритм плавающего горизонта
- •Алгоритмы построчного сканирования для криволинейных поверхностей
- •Библиотека OpenGl
- •Простейшая программа
- •Создание формы
- •Формат пикселя
- •Вершины и система координат
- •Треугольники
- •Многоугольники
- •Область рисования
- •Преобразование координат. Матрицы
- •Видовое преобразование. Масштабирование, поворот и перенос
- •Параметры вида. Перспективная проекция
- •Буфер глубины
- •Надстройки над OpenGl
- •Источник света
- •Свойства материала и модель освещения
- •Отсечение
- •Анализ алгоритмов. Модель вычислений
- •Асимптотический анализ алгоритмов
- •Анализ рекурсивных алгоритмов
- •Метод заметающей прямой
- •Метод локусов. Задачи геометрического поиска
- •Задачи регионального поиска. Многомерное двоичное дерево
- •Задачи локализации точки. Метод луча
- •Локализация точки на планарном подразбиении. Метод полос
- •Некоторые основные понятия вычислительной геометрии
- •Построение звездчатого полигона
- •Предварительная разработка алгоритма построения выпуклой оболочки на плоскости
- •Метод обода Грэхема
- •Триангуляция Делоне
- •Диаграмма Вороного
- •Построение диаграммы Вороного
- •Модель osi
- •Уровни модели tcp/ip
Алгоритм Варнока
В отличие от алгоритма Робертса, Варнок в 1968 г. предложил алгоритм, работающий не в объектном пространстве, а в пространстве изображения. В алгоритме Варнока и его вариантах делается попытка воспользоваться тем, что большие области изображения однородны. Такое свойство называют когерентностью, имея в виду, что смежные области (пиксели) вдоль обеих осей х и у имеют тенденцию к однородности.
В пространстве изображения рассматривается окно и решается вопрос о том, пусто ли оно, или его содержимое достаточно просто для визуализации. Если это не так, то окно разбивается на фрагменты до тех пор, пока содержимое фрагмента не станет достаточно простым для визуализации или его размер не достигнет требуемого предела разрешения. В последнем случае информация, содержащаяся в окне, усредняется, и результат изображается с одинаковой интенсивностью или цветом.
Конкретная реализация алгоритма Варнока зависит от метода разбиения окна и от деталей критерия, используемого для того, чтобы решить, является ли содержимое окна достаточно простым. В оригинальной версии алгоритма каждое окно разбивалось на четыре одинаковых подокна. Многоугольник, входящий в изображаемую сцену, по отношению к окну будем называть (рис. 6.3)
внешним, если он целиком находится вне окна;
внутренним, если он целиком расположен внутри окна;
пересекающим, если он пересекает границу окна;
охватывающим, если окно целиком расположено внутри него.
Рис. 6.3. Варианты расположения многоугольника по отношению к окну
Теперь можно в самом общем виде описать алгоритм. Для каждого окна:
Если все многоугольники сцены являются внешними по отношению к окну, то оно пусто; изображается фоновым цветом и дальнейшему разбиению не подлежит.
Если только один многоугольник сцены имеет общие точки с окном и является по отношению к нему внутренним, то окно заполняется фоновым цветом, а сам многоугольник заполняется своим цветом.
Если только один многоугольник сцены имеет общие точки с окном и является по отношению к нему пересекающим, то окно заполняется фоновым цветом, а часть многоугольника, принадлежащая окну, заполняется цветом многоугольника.
Если только один многоугольник охватывает окно и нет других многоугольников, имеющих общие точки с окном, то окно заполняется цветом этого многоугольника.
Если существует хотя бы один многоугольник, охватывающий окно, то среди всех таких многоугольников выбирается тот, который расположен ближе всех многоугольников к точке наблюдения, и окно заполняется цветом этого многоугольника.
В противном случае производится новое разбиение окна.
Шаги 1–4 рассматривают ситуацию пересечения окна только с одним многоугольником. Они используются для сокращения числа подразбиений. Шаг 5 решает задачу удаления невидимых поверхностей. Многоугольник, находящийся ближе всех к точке наблюдения, экранирует все остальные.
Алгоритм Вейлера-Азертона
Алгоритм работает в объектном пространстве, и результатом его работы являются многоугольники. В самом общем виде он состоит из четырех шагов.
Предварительная сортировка по глубине.
Отсечение по границе ближайшего к точке наблюдения многоугольника, называемое сортировкой многоугольников на плоскости.
Удаление многоугольников, экранируемых более близкими к точке наблюдения многоугольниками.
Если требуется, то рекурсивное разбиение и новая сортировка.
При этом используется именно исходный многоугольник, а не тот, что получился в результате первого отсечения. Такой подход позволяет минимизировать число разбиений.
