
- •Билет №1 Структура эвм общего назначения. Алу, уу
- •Арифметико-логические устройства.
- •Устройства управления.
- •Описание сегментного механизма
- •Билет №2 Структура эвм общего назначения. Risc и cisc процессоры. Форматы машинных команд.
- •Risc и cisc процессоры.
- •Форматы машинных команд.
- •Описание страничного механизма.
- •Билет №3 Структура эвм общего назначения. Способы адресации. Стековая адресация. Виды стеков.
- •Способы адресации.
- •Стековая адресация. Виды стеков.
- •Особенности страничного механизма в Pentium и в р6.
- •Билет №4 Микропроцессор вм86. Назначение входов/выходов вм86 в минимальном/максимальном режиме.
- •Назначение входов/выходов вм86 в максимальном режиме.
- •Общие сведения о механизмах адресации в защищенном режиме.
- •Билет №5 Внутренняя архитектура мп вм86. Программная модель мп вм86.
- •Программная модель мп вм86.
- •Форматы системных таблиц защищенного режима. Системные таблицы
- •Билет №6 мп вм86. Сегментация памяти. Организация оперативной памяти.
- •Общие сведения о 32х разрядных процессорах фирмы Intel. Tss, ldt, gdt. Селектор,дескриптор. Билет №7 мп вм86. Организация адресного пространства портов ву.
- •Общие сведения о 32х разрядных процессорах фирмы Intel. Режимы работы, Режимы работы 32 разрядного процессора.
- •Билет №8 Программируемый адаптер к1810вв55 (i8255)
- •Битовая карта ввода вывода
- •Билет 9 Программируемый таймер к1810ви54 (i8254)
- •Механизм перехода в защищенном режиме
- •Билет №10 Общие сведения об обработке прерываний.
- •Формат машинной команды 32х разрядного процессора.
- •Билет №11 Система прерываний вм86.
- •Внутренняя кэш-память.
- •Билет №12 Контроллер прерываний к1810вн59 (i8259). Настройка вн59.
- •Сведения о внутренней организации 32-х разрядных процессорах, (состав, назначение).
- •Билет №13 Общие сведения о прямом доступе к памяти.
- •Буфер tlb. Кэш-память страниц.
- •Билет 14 Контроллер прямого доступа к памяти к1810вт37 (i8237).
- •Программирование кпдп вт37
- •Вопрос №2
- •Билет 15
- •1. Организация процессорного модуля вм86.
- •2.21 Организация процессорного модуля вм86.
- •Программная модель 32-разрядного мп.
- •Программная модель 32 разрядного мп
- •Билет 16 Слабосвязанная конфигурация.
- •2.23. Слабо связанные конфигурации.
- •Форматы таблиц gdt, ldt и idt.
- •3.4. Системные таблицы
- •Билет 17 Арбитр шин к1810вб89 (i8289).
- •2.24. Арбитр шин к1810вб89 (i8289).
- •Формат дескриптора.
- •3.15 Формат дескриптора.
- •Билет №18 Сильно связанные конфигурации на примере совместной работы мп86 и арифметического сопроцессора вм87.
- •Форматы элементов pte и pde.
- •3.8. Формат элемента pte (pde).
- •Билет №19 Формат машинных команд мп вм86.
- •Механизм переключения задач. Формат сегмента tss
- •Билет №20 мп вм86. Сегментация памяти. Организация оперативной памяти.
- •Сегментация памяти.
- •2.7 Организация оперативной памяти.
- •Общие сведения о кэш-памяти.
- •Внутренняя кэш-память
- •Сведения о кэшах в процессорах фирмы Intel.
Билет №3 Структура эвм общего назначения. Способы адресации. Стековая адресация. Виды стеков.
Любая ЭВМ содержит два основных блока:
центральный процессор (ЦП);
оперативную память (ОП).
Задачей ЦП является выполнение машинных команд, которые он выбирает из ОП. Внутренняя организация различных ЦП может серьезно отличаться друг от друга, однако любой ЦП содержит ряд стандартных блоков. К ним относятся:
дешифратор команд, позволяющий декодировать считанную из ОП команду;
арифметико-логическое устройство (АЛУ), позволяющее реализовать заданную в команде операцию;
блок регистров общего назначения (блок РОН), предназначенных для временного хранения информации. Наличие РОН позволяет резко снизить количество обращений к ОП, повышая тем самым общее быстродействие ЭВМ;
устройство управления (УУ), обеспечивающее на всех этапах выполнения команды выра-ботку необходимых управляющих сигналов.
Оперативная память состоит из ПЗУ и ОЗУ и предназначена для хранения программ, исходных данных, а также промежуточных и конечных результатов вычислений.
Обычно ЭВМ общего назначения организуется по так называемой схеме с общей шиной (рис. 1).
Здесь ВУ – внешнее устройство.
Системная шина (СШ) в свою очередь подразделяется на шину адреса (ША), шину данных (ШД) и шину управления (ШУ). На ША процессор выставляет адреса ячеек памяти и портов внешних устройств, к которым он обращается. На шине управления процессор формирует сигналы, управ-ляющие передачей информации. Сама передача информации производится по ШД.
В любой конкретный момент времени к СШ может быть подключено не более двух устройств. Одно из этих устройств передает информацию, другое ее принимает. Как правило, одним из этих уст-ройств является ЦП, который и управляет передачей информации по шине. Исключением является режим прямого доступа к памяти, когда ЦП в обмене участия не принимает, а управление обменом берет на себя стоящий в системе контроллер прямого доступа к памяти.
Способы адресации.
Физическим адресом (Аф) будем называть двоичный номер ячейки памяти, к которой мы об-ращаемся. Адресным кодом (Ак) будем называть двоичное число, которое записано в адресном поле команды. Как правило в современных ЭВМ Ак не совпадает с Аф. Способ формирования Аф по за-данному в команде Ак и называется способом (методом) адресации. Далее рассмотрим наиболее час-то используемые на практике способы адресации.
Непосредственная адресация. В адресном поле команды задается не адрес операнда, а не-посредственно сам операнд. Например, sub bl, 25.
Прямая адресация. В адресном поле команды задается адрес ячейки памяти. То есть в этом случае Аф = Ак. Например, mov [200h],al. Прямая адресация не дает возможности для ор-ганизации циклов.
Косвенная адресация. Адресный код задает регистр процессора. Содержимое этого регистра берется в качестве Аф. Например, add ax, [bx]. Косвенная адресация предоставляет программисту простую возможность организации циклов.
Базовая адресация. Адресный код задает регистр процессора, откуда берется, так называе-мый, «базовый адрес», и некоторую величину, называемую смещением. Процессор вычис-ляет Аф путем сложения базового адреса со смещением. Например, add di, [si+100]. Базо-вая адресация удобна при работе с одномерными массивами. Базовый адрес при этом задает начальный адрес массива, а смещение указывает на элемент внутри массива. Кроме того, базовая адресация обеспечивает простую возможность перемещения программы в ОП без модификации этой программы.
Базово-индексная адресация. Адресный код задает два регистра процессора и смещение. Процессор вычисляет Аф, складывая смещение и содержимое обоих регистров. Например, mov dx, [bp+si+2]. Такая адресация удобна при работе с двухмерными массивами.