Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
В.Д.НЕФЕДОВ Е.Н.ТЕКСТЕР.doc
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
2.23 Mб
Скачать

§ 3. Химические последствия изомерных переходов

     Рассмотрим процессы, происходящие при изомерном переходе атома в составе молекулы [AmZXYn]. Если разрядка метастабильного состояния происходит с помощью радиационных переходов, то, в силу неизменности порядкового номера элемента и малой вероятности взаимодействия -квантов с электронными оболочками атома, можно считать, что зарядовое состояние системы не изменяется. Единственной причиной химических изменений может быть явление радиоактивной отдачи при эмиссии -квантов.

     Так как -квант уносит импульс (Р), то в соответствии с законом сохранения импульса атом основного изомера получает равный по величине, но противоположный по направлению импульс (Рм). При этом Р = Е/с* и Рм = MV, где с — скорость света; М и V — масса и скорость атома отдачи. В результате простых преобразований получаем

      .

     Расчет показывает, что при энергии -квантов, типичной для изомерных переходов (~100 кэВ) и М = 100 а. е. м., Ем  0,05 эВ. Эта энергия в сотни раз меньше энергии химических связей атомов Отсюда следует, что радиационный распад метастабильных состояний атомов в составе устойчивых молекул не должен сопровождаться раз. рушением последних и изомер в основном состоянии будет находиться в составе исходной молекулы.

     Если разрядка метастабильного состояния происходит путем внутренней конверсии, то непосредственным результатом является эмиссия электронов внутренней конверсии, возникновение вакансии во внутренних оболочках атома и изменение зарядового состояния молекулы в соответствии со схемой

     [AmZXY]q [AZXY](q + 1)* + eв. к. где ВК — внутренняя конверсия. Звездочка указывает на то, что изменение зарядового состояния произошло вследствие удаления электрона с внутренней оболочки.

     Энергия отдачи, получаемая атомом основного изомера при эмиссии электрона внутренней конверсии, определяется выражением

     EM = Eeв. к. = (Eп - Wi) , где Eeв.к.—энергия электрона внутренней конверсии. Нетрудно подсчитать, что так же, как и при радиационной разрядке, энергия отдачи в данном случае оказывается много меньше энергии химической связи.

     Основной причиной химических изменений при разрядке метастабильных состояний путем внутренней конверсии является возникновение вакансий во внутренних оболочках атомов.

     Это означает не просто появление заряда в исследуемой молекуле, но и сосредоточение в одном из входящих в ее состав атомов огромной, с химической точки зрения, энергии, отвечающей потенциалу ионизации внутренних электронных оболочек**. Последующее рассеяние этой энергии может осуществляться с помощью двух конкурирующих процессов — рентгеновских и Оже-переходов. В первом случае происходит последовательное испускание рентгеновских квантов с энергиями Еh = WК — WL,M,N. Такие процессы приводят к постепенному перемещению вакансий от внутренних к внешним оболочкам и завершаются в течение 10-15—10-16 с. Конечное состояние системы сиигветствует однократно ионизованной исходной молекуле.

     Процессы рассеяния энергии с помощью Оже-переходов состоят

Рис. 37. Схема Оже-переходов:  -переход электрона на вакансию; ­ - уход электрона за пределы атома

в перераспределении ее между двумя электронами, находящимися в поле ядра, и остальными электронами. При этом один из электронов переходит в состояние с меньшей энергией (заполняет вакансию в нижележащей оболочке), а другой уходит за пределы атома. Результатом каждого Оже-перехода является удвоение зарядового состояния атома. Схема Оже-переходов, последовательно осуществляемых в атоме, ионизированном в К-оболочке, представлена на рис. 37.

     Конечное зарядовое состояние атома (Q), достигаемое в результате n — Оже-переходов, определяется выражением Q = 2n, а энергия, которую получает атом вследствие n-кратной ионизации, составит

     E = I1 + I2 + ...IQ. где I1,...,IQ — потенциалы ионизации атома.

     Условием энергетической разрешенности Оже-переходов является соотношение

     Wi  Wi+1 + W+i+1, где Wi—энергия ионизации i-й оболочки; Wi+1—энергия ионизации (i + 1)-й оболочки; W+i+1 — энергия удаления электрона из однократно ионизированной (i + 1)-й оболочки.

     В действительности рассеяние энергии атома, ионизованного во внутренней оболочке, осуществляется как с помощью радиационных, так и с помощью Оже-переходов. Спектры зарядовых состояний атомов, возникающих при изомерных переходах, зависят от порядкового номера элемента, коэффициента внутренней конверсии для соответствующей оболочки и относительной интенсивности радиационных и Оже-переходов. Характер спектра зарядовых состояний сохраняется и в том случае, когда изомерный переход происходит в атоме, являющемся частью молекулы. Это означает, что за время 10-15—10-16 с возникает спектр зарядов молекулярных ионов, в которых весь заряд сосредоточен на атоме, испытавшем изомерный переход (на атоме основного изомера). Происходящие при этом процессы можно представить с помощью схемы

     [AmZXY] [AZXQ+iY], где ОП — Оже-переходы; n — число Оже-переходов; Qi — зарядовое состояние атома основного изомера.

     Ион [AZXQ+iY], образующийся за столь короткое время, сохраняет все параметры структуры (длины связей, углы и т. д.) исходной молекулы и вместе с тем содержит в своем составе многократно ионизованный атом. Последнее обстоятельство предопределяет крайнюю неустойчивость таких частиц. Их распад начинается с наиболее быстрых процессов перераспределения заряда, который осуществляется путем перетекания электронов от нейтральных структурных единиц к многократно ионизованному атому основного изомера. Этот процесс протекает за время ~10-14 с и может быть представлен схемой

     [AZXQ+iY]  [AZX(Qi-Q'i)+ YQ'+i] где Q'i — положительный заряд лигандов (структурных единиц).

     В результате этого внутри многозарядного иона образуется несколько одноименно заряженных центров. Эти центры будут испытывать кулоновское взаимодействие (F):

      , где r — расстояние между центрами. Такое взаимодействие является причиной взрывообразного распада иона с образованием различных заряженных фрагментов. Ниже приведено относительное содержание фрагментов, образующихся при изомерном переходе 80mВr в составе СН3Вr (содержание Вr5+ принято за единицу):

Br1+ 0,54

Br2+ 0,66

Br3+ 0,54

Br4+ 0,51

Br5+ 1,0

Br6+ 1,33

Br7+ 1,46

Br8+ 1,35

Br9+ 0,95

Br10+ 0,70

Br11+ 0,31

Br12+ 0,09

Br13+ 0,06

CH3Br+ 0,99

CH3+ 1,81

CH2+ 0,16

CH+ 0,21

C+ 0,26

H+ 0,17

  • E = mc2 или Е = Pc, где m — динамическая масса -кванта.    ** Эта энергия для К- и L-оболочек тяжелых атомов соответствует 40 — 50 кэВ.