
- •1.5. Общие данные двигателя тв2-117
- •1.5.1. Общие сведения
- •2. Компрессор тВаД
- •2.2. Конструкция компрессора
- •2.2.1.Общие сведения о компрессоре
- •2.2.2. Корпус компрессора
- •2.2.3. Ротор компрессора
- •Распределение рабочих лопаток ротора компрессора по ступеням:
- •2.2.4. Опоры ротора компрессора
- •2.2.4.1. Первая опора
- •2.2.4.2. Вторая опора
- •2.2.5. Противообледенительная система
- •3. Камера сгорания
- •3.2. Конструкция камеры сгорания двигателя тв2-117
- •3.2.1. Корпусы диффузора
- •3.2.1.1. Наружный корпус
- •3.2.1.2. Внутренний корпус
- •3.2.2. Корпус камеры сгорания
- •3.2.3. Жаровая труба
- •3.2.4. Топливная рабочая форсунка
- •3.2.5. Пусковой воспламенитель
- •4. Турбины, выхлопное устройство
- •4.1.2. Работа ступени осевой турбины
- •4.1.2.1. Принцип работы ступени
- •4.3. Конструкция трубины
- •4.3.1. Турбина компрессора
- •4.3.1.1. Ротор турбины
- •4.3.1.2. Сопловой аппарат I ступени турбины
- •4.3.1.3. Сопловой аппарат II ступени
- •4.3.1.4. Третья опора
- •4.3.2. Свободная турбина
- •4.3.2.1. Ротор свободной турбины
- •4.3.2.2. Сопловой аппарат III ступени
- •4.3.2.3. Сопловой аппарат IV ступени
- •4.3.2.4. Четвертая и пятая опоры
- •4.3.3. Система охлаждения турбин
- •4.4. Выхлопное устройство
- •5. Передачи и приводы
- •5.1. Главный привод
- •5.3. Коробка приводов
- •6. Система смазки и суфлирования
- •6.2. Маслосистема двигателя
- •6.2.1. Верхний масляный агрегат
- •6.2.2. Нижний масляный агрегат
- •6.2.3. Система суфлирования двигателя
- •7. Топливная система
- •7.1. Общие сведения о топливной системе двигателя тв2-117
- •7.1.1. Система низкого давления
- •7.1.2. Система высокого давления
- •7.1.3. Пусковая топливная система
- •7.1.4. Система дренажа
- •7.2. Агрегаты топливной системы двигателя тв2-117
- •7.2.1 Насос-регулятор нр-40ва (нр-40вг)
- •7.2.1.1. Насос высокого давления
- •7.2.1.2. Клапан постоянного перепада давления (кппд) и дозирующая игла*
- •7.2.1.3. Регулятор оборотов
- •7.2.1.4. Клапан минимального давления топлива
- •7.2.1.5. Автомат запуска
- •7.2.1.6. Ограничитель приведенных чисел оборотов
- •7.2.1.7. Клапан стравливания воздуха
- •7.2.1.8. Ограничитель максимального расхода
- •7.2.1.9. Запорный клапан
- •7.2.1.10. Подпорный клапан
- •7.2.1.11. Распределительный клапан
- •7.2.1.12. Запорно-подпорный клапан второго контура
- •7.2.1.13. Стоп-кран
- •7.2.1.14. Особенности конструкции насоса-регулятора нр-40вр (ограничитель степени сжатия)
- •7.2.2. Регулятор числа оборотов ро-40вр
- •7.2.3. Синхронизатор мощности со-40
- •7.2.4. Исполнительный механизм им-40 ограничителя максимальной температуры газа
- •7.2.5. Блок электромагнитных клапанов с клапаном постоянного давления
- •7.3. Дренажная система
- •7.4. Система защиты турбины винта (сзтв) от раскрутки
- •8. Гидравлическая система
- •8.1. Общие сведения о гидравлической системе
- •8.2. Плунжерный насос пн-40р
- •8.3. Командный агрегат ка-40
- •8.3.1. Центробежный датчик
- •8.3.2. Блок контактов
- •8.3.3. Двухпозиционный датчик
- •8.3.4. Датчик полной температуры
- •8.3.5. Датчик командного давления
- •8.3.6. Клапан стравливания
- •8.4. Гидромеханизмы
- •8.5. Клапан противообледенения
- •8.6. Клапан перепуска воздуха
- •9. Система запуска
- •9.1. Общие сведения о запуске твд
- •9.1.1. Первый этап
- •9.1.2. Второй этап
- •9.1.3. Третий этап
- •9.2. Особенности электрического запуска твд
- •9.3. Система запуска
- •9.3.1. Общая характеристика системы запуска
- •9.3.2. Агрегаты электрической системы, обеспечивающие
- •9.3.2.1. Стартер-генератор гс-18мо
- •9.3.2.2. Пусковая панель псг-15
- •9.3.3. Система зажигания
- •9.3.3.1. Агрегат зажигания скна-22-2а
- •9.3.3.2. Запальная свеча сп-18уа
- •9.3.4. Пусковая топливная система
- •9.3.5. Работа системы запуска двигателя тв2-117
- •9.3.5.1. Нажатие кнопки «запуск» (1-я секунда)
- •9.3.5.11. Выход двигателя на режим «малый газ»
- •10. Система регулирования и управления
- •10.1. Общие сведения о системе регулирования и управления
- •10.2. Регулирование двигателя тв2-117
- •10.2.1. Регулирование при запуске
- •10.2.2. Регулирование на установившихся режимах
- •10.2.3. Регулирование при приемистости
- •10.2.4. Регулирование при снижении режима
- •10.2.5. Регулирование параметров двигателя
- •10.3. Управление силовой установкой вертолета Ми-8
- •10.3.1. Принципиальная схема системы управления силовойустановкой вертолета ми-8
- •10.3.2. Совместная работа регуляторов частоты вращения турбокомпрессора и свободной турбины
- •10.4. Система ограничения температуры газа
- •10.5. Приборы контроля параметров работы двигателя
- •10.5.1. Измеритель числа оборотов ротора компрессора
- •10.5.2. Термометр и манометры для масла и топлива
9.1.1. Первый этап
Первый этап продолжается с момента включения стартера-генератора ГС-18МО в стартерный режим работы (nтк=0) до момента подачи в камеру сгорания и воспламенения в ней рабочего топлива (nтк = 17÷19%).
Раскрутка ротора турбокомпрессора на этом этапе осуществляется только стартером-генератором ГС-18МО.
9.1.2. Второй этап
Второй этап длится с момента, когда турбина компрессора начинает развивать положительный крутящий момент (n1) до момента отключения стартера-генератора ГС-18МО (n2). Раскрутка ротора турбокомпрессора на этом этапе осуществляется как стартером-генератором ГС-18МО, так и турбиной компрессора. Стартер-генератор ГС-18ГС на этом этапе работает в режиме сопровождения.
Отключение ГС-18МО происходит при nтк=57÷63%.
9.1.3. Третий этап
Третий этап продолжается с момента отключения стартера-генератора ГС-19МО (n2) до момента выхода двигателя на режим малого газа (nмг). Раскрутка ротора турбокомпрессора на этом этапе осуществляется только его турбиной. При работе двигателя на малом газе обороты турбокомпрессора должны быть равны 65+2 -1%.
Как видно из вышесказанного, в запуске двигателя ТВ2-117 должны принимать участие несколько систем:
— электрическая система;
— система зажигания;
— пусковая топливная система.
Кроме запуска двигателя система запуска может осуществлять холодную прокрутку и ложный запуск.
Холодная прокрутка предназначена для удаления из проточной части двигателя остатков топлива после неудавшегося запуска, охлаждения деталей проточной части двигателя. При холодной прокрутке осуществляется раскрутка ротора турбокомпрессора без подачи топлива в камеру сгорания. При холодной прокрутке работает только электрическая система, система зажигания и топливная система не задействованы.
Ложный запуск, т.е. запуск без воспламенения топливовоздушной смеси, производится с целью проверки работы систем, участвующих в запуске, а также при проведении консервации и расконсервации двигателя. При ложном запуске работают электрическая и топливная системы, система зажигания не задействована.
9.2. Особенности электрического запуска твд
При использовании для раскрутки ротора турбокомпрессора ТВД электрической системы в
качестве пускового устройства (стартера) применяется стартер-генератор ГС-18МО, работающий в режиме электродвигателя. Источниками напряжения могут быть бортовые аккумуляторные батареи или наземные средства обеспечения электроэнергией.
Для сокращения продолжительности запуска двигателя стартер должен обеспечивать раскрутку ротора турбокомпрессора на первом этапе с большими угловыми ускорениями (400÷600 с-2). Кроме того, стартер должен сопровождать раскрутку ротора турбокомпрессора до частоты вращения nтк=57÷63% и при этом иметь своем валу достаточно большой момент для увеличения частоты вращения ротора.
Стартер-генератор ГС-18МО представляет собой шестиполюсную электрическую машину
постоянного тока с шунтовым возбуждением (рис.9.2,а). Такие электрические машины при работе в режиме электродвигателя имеют характеристики, представленные на рисунке 9.2,б.
Рис. 9.2. Характеристики электродвигателя постоянного тока с шунтовым возбуждением:
а) схема подключения якоря (Я) и обмотки возбуждения (ОВ);
б) скоростная 1, токовая 2 и моментная 3характеристики пуска электродвигателя при
постоянном значении напряжения источника питания (U=const) ;Iя — ток, проходящий через якорь электродвигателя; n— частота вращения ротора электродвигателя; М— момент на валу электродвигателя; τ— время
На графиках (рис.9.2,б) можно выделить два участка: I участок неустановившегося переходного процесса и II участок установившихся параметров частоты вращения n и величины тока Iя. Из анализа графиков можно сделать выводы:
— сразу после подачи напряжения на электродвигатель (τ ≈ 0) происходит интенсивная раскрутка его ротора с большими угловыми ускорениями, электроток, проходящий через якорь максимален. В этот момент времени на валу электродвигателя максимальный крутящий момент и, следовательно, детали кинематически связанные с ротором электродвигателя, нагружены максимальными нагрузками.
Большая величина тока якоря приводит к значительному тепловыделению в обмотках стартера;
— в процессе раскрутки ротора электродвигателя нагрузки, тепловыделение снижаются, но (в
пределах I участка) снижается также интенсивность раскрутки ротора;
— на II участке величины Iя и n стабилизируются, их дальнейшее увеличение при U=const
невозможно. На этом участке М=Мсопр. т.е. вся энергия, подводимая к стартеру, расходуется на нагрев обмоток, преодоление сил трения в подшипниках и др.
Из сказанного можно сделать выводы:
— первоначально к стартеру необходимо подавать пониженное напряжение, это снизит нагрузки на его детали, нагрев обмоток;
— по мере раскрутки ротора необходимо увеличивать подаваемое к стартеру напряжение или не допускать падения величины тока, проходящего через якорь стартера.
Пониженное напряжение к стартеру можно подавать, включив последовательно с ним добавочное сопротивление (Rд) (рис.9.3,а). На этом сопротивлении происходит падение напряжения и, следовательно, к стартеру будет подаваться пониженное напряжение. Затем в соответствии с программой запуска это сопротивление выключается из работы (шунтируется) при подаче напряжения на контактор К6.
Еще одним способом изменения напряжения, подаваемого к стартеру, является изменение схемы включения источников постоянного тока, например, аккумуляторных батарей. На рисунке 9.3,б видно, что при нижнем положении контактов (контактор К5 обесточено) батареи Ак1 и Ак2 включены параллельно. Так как напряжение на каждой из батарей равно 24 В, то к стартеру будет подавать такое же напряжение 24 В. При подаче напряжения на К5 контакты занимают верхнее положение — аккумуляторные батареи будут включены последовательно и к стартеру будет подаваться напряжение 24+24=48 В.
Рис. 9.3. Способы изменения напряжения, подаваемого к стартеру:
а)— включением добавочного сопротивления (Rд);
б)— изменением схемы включения аккумуляторных батарей (Ак1 и Ак2)
Для сохранения величины тока, проходящего через якорь стартера, включение стартера
осуществляется через регулятор тока. На вертолете Ми-8 применен угольный регулятор тока РУТ-600Д.
РУТ-600Д обеспечивает поддержание постоянной мощности стартера при запуске двигателя.
Регулятор включается в схему на I участке работы электродвигателя (стартера), когда по токовой обмотке 8 (рис. 9.4) протекает ток большой величины. Под действием магнитного поля, создаваемого током обмотки 8, якорь 3, преодолевая сопротивление пружины 4, сжимает угольный столбик 1. В результате этого по обмотке возбуждения стартера (ОВ) будет протекать ток определенной величины и создается магнитный поток. По мере возрастания скорости вращения увеличивается противоэлектродвижущая сила якоря стартера. Ток в цепи якоря будет уменьшаться (Iя↓), что приведет к уменьшению магнитного потока обмотки 8. Следовательно, якорь 3 будет сжимать угольный столбик 1 с меньшей силой, сопротивление столбика увеличится, а ток в цепи возбуждения стартера и магнитный поток уменьшатся. Это вызовет увеличение тока, проходящего через якорь стартера (Iя↑), и скорости вращения ротора стартера.
Таким образом, регулятор тока РУТ-600Д, поддерживая потребляемый якорем стартера ток
постоянным (Iя=const), поддерживает мощность стартера неизменной. Управляющая обмотка 7 и сопротивление 11 предназначены для коррекции тока якоря по напряжению источника питания.
Стабилизирующая обмотка 6 обеспечивает устойчивую работу РУТ (без колебаний) при переходных процессах.
Регулятор тока может быть выключен из работы при замыкании контактов К7, при этом угольный столбик шунтируется и РУТ-600Д не влияет на работу стартера.
Рис. 9.4. Принципиальная электрическая (а) и конструктивная схемы регулятора тока:
1— угольный столбик; 2— упорный винт; 3— якорь; 4— пружина; 5— магнитопровод;
6— стабилизирующая обмотка; 7— управляющая обмотка; 8— токовая (рабочая) обмотка;
9— контактный винт; 10— электростартер; 11— регулировочное сопротивление