
- •Ответы на экзаменационные вопросы по электронике
- •2. Пассивные линейные элементы. Наименование, обозначение, единицы измерения, соотношение между током и напряжением.
- •6 Физические основы полупроводниковых приборов. Собственная и примесная электропроводность.
- •9 Классификация и назначение полупроводниковых приборов.
- •Биполярные транзисторы.
- •Тиристоры.
- •10 Полупроводниковый диод: типы, назначение, принцип работы, основные параметры, вах, рабочая точка.
- •12. Светодиод, фотодиод: физические процессы, назначание, режим работы.
- •12 Оптрон: назначение, принцип работы, классификация.
- •14 Биполярный транзистор: структура, принцип работы, токи в транзисторе, вах.
- •15 Биполярный транзистор: схемы включения, вах, максимально допустимые параметры.
- •17 Полевые транзисторы: назначение, классификация, принцип работы.
- •Параметры, характеризующие свойства транзистора усиливать напряжение.
- •18 Полевой транзистор с затвором в виде p-n перехода: принцип работы, вах, основные параметры.
- •19 Полевой транзистор с изолированным затвором и встроенным каналом: структура, принцип работы, вах.
- •21 Тиристоры: классификация, принцип работы, вах
- •Классификация и система обозначений тиристоров
- •24 Обратная связь в усилителях электрических сигналов. Назначение, классификация, принцип работы.
- •25 Усилительный каскад на биполярных транзисторах: основные схемы (оэ, об, ок), статический и динамический режим работы.
- •26 Режим работы транзистора в усилительном каскаде (а, ав, в, с, д)
- •27 Основные схемы стабилизации рабочей точки биполярного транзистора в уселительных каскадах
- •28 Усилительный каскад на биполярном транзисторе (схема с общим эмиттером и эмиттерной стабилизацией рабочей точки): выбор режим работы транзистора, статический и динамический режим работы.
- •29 Усилительный каскад на биполярных транзисторный (схема с общим коллектором): назначение, принцип работы, основные характеристики.
- •30 Инвертирующий усилитель на основе операционного усилителя.
- •Операционные усилители
- •32 Неинвертирующий усилитель на основе операционного усилителя. Повторитель напряжения.
15 Биполярный транзистор: схемы включения, вах, максимально допустимые параметры.
Вольт-амперные характеристики биполярного транзистора в активном режиме
Рассмотрим случай, когда на эмиттерный переход биполярного транзистора подано прямое, а на коллекторный – обратное смещение. Для p-n-p биполярного транзистора это Uэ > 0, Uк < 0.
Для нахождения ВАХ
в качестве входных параметров выбирают
Jэ, Uк; а выходных – Jк, Uэ, из соображений
удобства измерения. В (4.5) выразим (
- 1), подставим в Jк и получим:
Следовательно,
.
(5.6)
Соотношение (4.6) описывает семейство коллекторных характеристик Iк = f(Uк)с параметром Iэ.
Семейство эмиттерных
характеристик Uэ = f(Iэ) с параметром Uк
получим из (5.5). Учитывая, что
,
получаем:
(5.7)
Формулы (5.6) и (5.7) описывают характеристики транзистора, представленные на рис. 5.9.
Рис. 5.9. Вольт-амперные характеристики БТ в активном режиме: семейство коллекторных кривых
Для активного режима, когда Uэ > 0, Uк < 0, |Uк| << 0, выражения (5.6) и (5.7) переходят в
16 h- параметры биполярного транзистора и их определение по ВАХ.
При определении переменных составляющих токов и напряжений (т. е. при анализе на переменном токе) и при условии, что транзистор работает в активном режиме, его часто представляют в виде линейного четырехполюсника (рис. 3.8). В четырехполюснике условно изображен транзистор с общим эмиттером.
Рис. 3.8. Транзистор в виде четырехполюсника
Для разных схем включения транзистора токи и напряжения этого четырехполюсника обозначают различные токи и напряжения транзистора. Например, для схемы с общим эмиттером эти токи и напряжения следующие:
i1 – переменная составляющая тока базы;
u1 – переменная составляющая напряжения между базой и эмиттером;
i2 – переменная составляющая тока коллектора;
u2 – переменная составляющая напряжения между коллектором и эмиттером.
Транзистор удобно описывать, используя так называемые h-параметры.
Входное сопротивление транзистора для переменного сигнала (при закороченном выходе: u2=0) :
.
Аналогично
- коэффициент
обратной связи по напряжению.
Режим работы при i1=0 называют холостым ходом на входе.
Далее
- коэффициент
передачи тока,
- выходная
проводимость.
При этом
,
т. е.
Коэффициенты hij определяются опытным путем. Параметры, соответствующие схеме с общим эмиттером, обозначаются буквой «э», а схеме с общей базой – буквой «б».
17 Полевые транзисторы: назначение, классификация, принцип работы.
Полевой транзистор является очень широко используемым активным (т. е. способным усиливать сигналы) полупроводниковым прибором. Впервые он был предложен в 1930 году.
Полевыми транзисторами называют активные полупроводниковые приборы, в которых выходным током управляют с помощью электрического поля (в биполярных транзисторах выходной ток управляется входным током).
Полевые транзисторы называют также униполярными, так как в процессе протекания электрического тока участвуют только основные носители.
Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором.
Устройство полевого транзистора. Схематическое изображение структуры полевого транзистора с управляющим переходом и каналом p-типа приведено на рис 4.1,а условное графическое обозначение этого транзистора – на рис. 4.2,а. Стрелка указывает направление от слоя p к слою n (как и стрелка в изображении эмиттера биполярного транзистора). В интегральных микросхемах линейные размеры транзисторов могут быть меньше 1 мкм.
Рис. 4.1. Структура полевого транзистора
Рис. 4.2. Графическое изображение полевого транзистора:
а) с управляющим переходом и каналом p-типа;
б) с управляющим p-n–переходом и каналом n-типа
Удельное сопротивление слоя n (затвора) намного меньше удельного сопротивления слоя p (канала), поэтому область p-n–перехода, обедненная подвижными носителями заряда и имеющая очень большое удельное сопротивление, расположена главным образом в слое p.
Если типы проводимости слоев полупроводника в рассмотренном транзисторе изменить на противоположные, то получим полевой транзистор с управляющим p-n–переходом и каналом n–типа. Его условное графическое обозначение представлено на рис. 4.2,б.
Схемы включения транзистора. Для полевого транзистора, как и для биполярного, выделяют три схемы включения. Для полевого транзистора это схемы с общим затвором (ОЗ), общим истоком (ОИ) и общим стоком (ОС). Наиболее часто используют схемы с общим истоком (рис. 4.3).
Рис. 4.3. Схема включения полевого транзистора с общим истоком (ОИ)
Так как в рабочем
режиме
,
а
,
входными характеристиками обычно не
пользуются. Например, для транзистора
КП103Л для тока утечки затвора Iз.ут
при t<85°C
выполняется условие
.
Выходные (стоковые) характеристики. Выходной характеристикой называют зависимость вида
,
где f – некоторая функция.
Полевой транзистор характеризуется следующими предельными параметрами (смысл которых понятен из обозначений): Uис.макс, Uзс.макс, Рмакс.
Для транзистора КП103Л Uис.макс=10 В, Uзс.макс=15 В, Рмакс=120 мВт (все при t=85°С).
Стокозатворные характеристики (характеристики передачи, передаточные, переходные, проходные характеристики). Стокозатворной характеристикой называют зависимость вида
const,
где f – некоторая функция.
Такие характеристики не дают принципиально новой информации по сравнению с выходными, но иногда более удобны для использования. Для некоторых транзисторов задается максимальное (по модулю) допустимое отрицательное напряжение uзи, например, для транзистора 2П103Д это напряжение не должно быть по модулю больше чем 0,5 В.