
- •Предмет, содержание гигиены, место и значение гигиены в деятельности практического врача
- •Методология гигиены
- •Окружающая среда и здоровье
- •Гигиеническое нормирование
- •Структура санитарной службы
- •Дегидратация
- •Факторы, определяющие органолептические свойства воды
- •Роль воды в патологии человека
- •Водные инфекции
- •Химический состав воды
- •Индифферентные химические вещества в воде
- •Биоэлементы
- •Химический состав воды как причина заболеваний неинфекционной природы
- •Выбор источника хозяйственно-питьевого водоснабжения
- •Зсо для подземных источников
- •Нормативы качества воды
- •Показатели санитарно-эпидемиологической безопасности воды
- •Организмы – индикаторы фекального загрязнения
- •Общие колиформные бактерии
- •Термотолерантные фекальные колиформы
- •Сульфитредуцирующие клостридии
- •Общее микробное число
- •Вирусологические показатели качества воды
- •Простейшие
- •Безвредность воды в отношении загрязнений, нормируемых по санитарно-токсикологическим показателелям или по химическому составу
- •Атмосфера как фактор окружающей среды. Ее структура, состав и характеристика
- •Химический состав воздуха
- •Закономерности поведения атмосферных загрязнений в приземном слое
- •Мероприятия по санитарной охране атмосферного воздуха
- •Рациональное питание – алиментарный фактор в современных экологических условиях
- •Гигиенические проблемы применения и использования пищевых добавок
- •Пестициды и нитраты в гигиене питания
- •Алиментарные анемии
- •Рациональное питание. Основные положения теории рационального сбалансированного питания
- •Физиологические нормы питания
- •5 Групп интенсивности труда
- •Заменимые и незаменимые аминокислоты, значение и потребность в них
- •Биологическая роль незаменимых аминокислот
- •Заменимые аминокислоты
- •Значение жиров в питании здорового человека
- •Состав жиров
- •Полиненасыщенные (эссенциальные) жирные кислоты
- •Химическая структура и классификация углеводов
- •Значение простых и сложных углеводов в питании
- •Потребность и нормирование углеводов
- •Минеральные вещества. Роль и значение в питании человека
- •Макро– и микроэлементы, их роль и значение
- •Восприятие шума и звука
- •Влияние шума на организм
- •Регламентация шума
- •Меры по предупреждению вредного воздействия шума
- •Вибрация и ее значение в гигиене труда
- •Профилактика неблагоприятного воздействия вибрации
- •III группа – дети, страдающие хроническими заболеваниями в стадии ремиссии (компенсации).
- •Критерии определения, методы и принципы изучения здоровья детского населения
- •Факторы, влияющие на состояние здоровья детей и подростков
- •Методы оценки физического развития детей и подростков
- •Метод сигмальных отклонений
- •Метод процентильных (центильных, перцентильных) шкал
- •Метод шкал регрессии
- •Метод оценки физического развития детей по комплексной схеме
- •Гигиена полости рта
- •Физическая культура
- •Закаливание
- •Закаливание воздухом
- •Гигиена одежды
- •Гигиена обуви
- •Список литературы
Заменимые и незаменимые аминокислоты, значение и потребность в них
В настоящее время известно 80 аминокислот, наибольшее значение в питании имеют 30, которые наиболее часто встречаются в продуктах и чаще всего потребляются человеком. К ним относятся следующие.
1. Алифатические аминокислоты:
а) моноаминомонокарбоновые – глицин, аланин, изолейцин, лейцин, валин;
б) оксимоноаминокарбоновые – серин, треонин;
в) моноаминодикарбоновые – аспаргиновая, глютаминовая;
г) амиды моноаминодикарбоновых кислот – аспарагин, глутамин;
д) диаминомонокарбоновые – аргинин, лизин;
е) серосодержащие – гистин, цистеин, метионин.
2. Ароматические аминокислоты: фенилаланин, тирозин.
3. Гетероциклические аминокислоты: триптофан, гистидин, пролин, оксипролин.
Наибольшее значение в питании представляют незаменимые аминокислоты, которые не могут синтезироваться в организме и поступают только извне – с продуктами питания. К их числу относят 8 аминокислот: метионин, лизин, триптофан, треонин, фенилаланин, валин, лейцин, изолейцин. В эту группу входят и аминокислоты, которые в детском организме не синтезируются или синтезируются в недостаточном количестве. Прежде всего это гистидин. Предметом дискуссий является также вопрос о незаменимости в детском возрасте глицина, цистина, а у недоношенных детей также глицина и тирозина. Биологическая активность гормонов АКТГ, инсулина, а также коэнзима А и глютатиона определена наличием в их составе SH-групп цистина. У новорожденных детей из-за недостатка цистеназы лимитирован переход метионина в цистин. В организме взрослого человека тирозин легко образуется из фенилаланина, а цистин – из метионина, однако обратной заменяемости нет. Таким образом, можно считать, что число незаменимых аминокислот составляет 11—12.
Поступающий белок считается полноценным, если в нем присутствуют все незаменимые аминокислоты в сбалансированном состоянии. К таким белкам по своему химическому составу приближаются белки молока, мяса, рыбы, яиц, усвояемость которых около 90 %. Белки растительного происхождения (мука, крупа, бобовые) не содержат полного набора незаменимых аминокислот и поэтому относятся к разряду неполноценных. В частности, в них содержится недостаточное количество лизина. Усвоение таких белков составляет, по некоторым данным, 60 %.
Для изучения биологической ценности белков используют две группы методов: биологические и химические. В основе биологических лежит оценка скорости роста и степени утилизации пищевых белков организмом. Данные методы являются трудоемкими и дорогостоящими.
Химический метод колоночной хроматографии позволяет быстро и объективно определить содержание аминокислот в пищевых белках. На основании этих данных биологическую ценность белков определяют путем сравнения аминокислотного состава изучаемого белка со справочной шкалой аминокислот гипотетического идеального белка или аминограмм высококачественных стандартных белков. Этот методический прием получил название аминокислотного СКОРА = отношению количества АК в мг в 1 г исследуемого белка к количеству АК в мг в 1 г идеального белка, умноженного на 100 %.
Белки животного происхождения имеют наибольшую биологическую ценность, растительные – лимитированы по ряду незаменимых аминокислот, прежде всего по лизину, а в пшенице и рисе – также и по треонину. Белки коровьего молока отличаются от белков грудного дефицитом серосодержащих аминокислот (метионина, цистина). К «идеальному белку» по данным ВОЗ приближается белок грудного молока и яиц.
Важным показателем качества пищевого белка служит также степень его усвояемости. По степени переваривания протеолитическими ферментами пищевые белки располагаются следующим образом:
1) белки рыбы и молока;
2) белки мяса;
3) белки хлеба и круп.
Белки рыбы лучше усваиваются из-за отсутствия в их составе белка соединительной ткани. Белковая полноценность мяса оценивается по соотношению между триптофаном и оксипролином. Для мяса высокого качества это соотношение составляет 5,8.
Каждая аминокислота из группы эссенциальных играет определенную роль. Их недостаток или избыток ведет к каким-либо изменениям в организме.