
- •Содержание
- •Лекционный курс
- •1. Теоретические основы передачи и распределения электроэнергии
- •2. Системотехника передачи и распределения электроэнергии
- •2.1. Электроэнергетические системы
- •2.2. Сети передачи и распределения электроэнергии
- •2.2.1. Структура и функции сетей п и рэ
- •2.2.2. Основные требования к сетям п и рэ
- •2.3. Классификация сетей передачи и распределения электроэнергии
- •2.3.1. По признакам, связанным с номинальным напряжением
- •2.3.2. По роду тока
- •2.3.3. По конфигурации
- •2.3.4. По конструктивному исполнению
- •2.4. Элементы сетей передачи и распределения электроэнергии
- •2.4.1. Параметры и схемы замещения линий электропередач
- •2.4.2. Параметры и схемы замещения трансформаторов
- •2.4.3. Учет электрических нагрузок
- •2.4.4. Графики электрических нагрузок
- •2.4.5. Потери мощности и электроэнергии в электрических сетях
- •3. Режимы сетей передачи и распределения электроэнергии
- •3.1. Виды режимов электроэнергетических систем. Общие положения расчета установившихся режимов
- •3.2. Расчеты установившихся режимов разомкнутых сетей с одним источником питания
- •3.2.1. Расчетные нагрузки узлов электрической сети
- •3.2.2. Расчет режима разомкнутой сети по напряжению, заданному в конце сети
- •3.2.3. Расчет режима разомкнутой сети по напряжению, заданному в начале сети
- •3.2.4. Расчет напряжения на вторичной обмотке трансформатора
- •3.2.5. Особенности расчета местных электрических сетей
- •3.3. Расчеты установившихся режимов замкнутых сетей
- •3.4. Регулирование режимов систем передачи и распределения электроэнергии
- •3.4.1. Регулирование частоты и активной мощности
- •3.4.2. Регулирование напряжения и реактивной мощности
- •4. Основы типового проектирования сетей передачи и распределения электроэнергии
- •4.1. Типовые схемы внешнего электроснабжения предприятий
- •4.2. Выбор номинального напряжения сети
- •4.3. Выбор сечений воздушных и кабельных линий
- •4.3.1. Экономические критерии выбора
- •4.3.2. Технические критерии выбора сечений проводов воздушных линий
- •4.3.2. Технические критерии выбора жил кабельных линий
- •4.4. Выбор схем присоединения понижающих подстанций и трансформаторов на понижающих подстанциях
- •Аппаратный лабораторный практикум Лабораторная работа №1. Регулирование напряжения в электрических сетях
- •Теоретические сведения
- •Описание лабораторного стенда нтц–67 «Распределительные сети систем энергоснабжения »
- •Ход выполнения работы Эксперимент №1. Регулирование напряжения методом изменения коэффициента трансформации
- •Эксперимент №2. Регулирование напряжения методом поперечной компенсации мощности конденсаторной батареей
- •Эксперимент №3. Регулирование напряжения методом продольной компенсации мощности конденсаторной батареей
- •Варианты индивидуальных заданий
- •Задания на защиту лабораторной работы
- •Лабораторная работа №2. Исследование установившихся режимов работы разомкнутой распределительной электрической сети
- •Теоретические сведения
- •Ход выполнения работы Эксперимент №1. Измерение параметров установившегося режима работы трансформатора
- •Эксперимент №2. Исследование параметров установившегося режима разомкнутой распределительной электрической сети
- •Варианты индивидуальных заданий
- •Задания на защиту лабораторной работы
- •Виртуальный лабораторный практикум (часть 1) Работа №1. Моделирование простейших электрических цепей в программном обеспечении схемотехнической сапр
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Основы работы с пакетом CircuitMaker
- •Пример 1. Моделирование участка электрической цепи с активным сопротивлением
- •Пример 2. Моделирование участка электрической цепи с активно-индуктивным сопротивлением
- •Типичные ошибки моделирования и способы их исправления
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №2. Математическое моделирование простейших электрических цепей
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Основы работы с пакетом MathCad
- •Пример 1. Анализ участка электрической цепи с активным сопротивлением
- •Пример 2. Анализ участка электрической цепи с активно-индуктивным сопротивлением
- •Задания на защиту работы
- •Работа №3. Исследование режимов передачи мощности по линиям электропередачи
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №4. Исследование п-образной схемы замещения линий электропередач
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Задания на защиту работы
- •Виртуальный лабораторный практикум (часть 2) Работа №1. Исследование схем замещения трансформаторов и автотрансформаторов
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Пример 1. Использование программной анимации
- •Пример 2. Расчет параметров схемы замещения двухобмоточного трансформатора
- •Пример 3. Расчет параметров схемы замещения автотрансформатора
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №2. Расчет и анализ регулирующего эффекта нагрузки электроэнергетической системы по напряжению
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №3. Построение и расчет параметров суточных графиков нагрузки
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Пример выполнения расчета по ходу выполнения работы
- •Дополнительные рекомендации по выполнению индивидуальных вариантов
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №4. Расчет и анализ параметров упорядоченных сезонных графиков нагрузки. Расчет нагрузочных потерь
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №5. Режим холостого хода линий электропередач с установками поперечной компенсации
- •Теоретические сведения
- •Ход выполнения работы
- •Часть 1
- •Часть 2
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Часть 1
- •Часть 2
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №6. Режим линий электропередач с продольной компенсацией
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Литература
2.3.3. По конфигурации
При построении сетей передачи и распределения электроэнергии используется большое многообразие конфигураций, которые можно разделить на две группы: разомкнутые и замкнутые.
В местных распределительных сетях электроэнергия к потребителям распределяется от центров питания, под которыми понимаются шины распределительных устройств вторичного напряжения (6–35 кВ) понижающих подстанций ЭЭС или шины распределительных устройств того же напряжения электростанций. Эти сети, как правило, имеют разомкнутую конфигурацию, т.е. не содержат замкнутых контуров, питаются от одного центра питания и передают электрическую энергию к потребителю только в одном направлении. Разомкнутые сети бывают радиальными, магистральными, смешанными (радиально-магистральными) и петлевыми.
В радиальных схемах электроснабжение осуществляется по линиям, не имеющим распределения энергии по их длинам. Радиальные схемы применяются в тех случаях, когда потребители расположены в разных направлениях от центра питания. Конфигурация радиальной схемы для трех потребителей показана на Error: Reference source not found–а. Для подключения потребителя к центру питания соответствующий разъединитель замыкается.
При расположении потребителей в одном направлении от центра питания используется магистральная схема, в которой линии, питающие потребителей, имеют распределение энергии по длине. Конфигурация магистральной схемы для трех потребителей показана на Error: Reference source not found–б.
Смешанные схемы применяются при различном расположении потребителей относительно центра питания и сочетают принципы построения как радиальной, так и магистральной схем. Пример смешанной конфигурации показан на Error: Reference source not found–а.
В петлевой схеме участки линий, связывающих между собой различных потребителей, образуют замкнутый контур – петлю, но в нормальном режиме петлевая схема всегда работает в разомкнутом состоянии, поэтому ее иногда называют полузамкнутой. В примере на Error: Reference source not found–б в нормальном режиме может быть разомкнут разъединитель a на подстанции потребителя П2, а все остальные замкнуты, т.е. потребители П1 и П2 получают питание по магистральному участку 1–2, а П3 и П4 – по магистральному участку 3–4. Если происходит повреждение какого-либо участка линии, например 4, то потребитель П3 остается без питания. Для восстановления электроснабжения замыкается разъединитель a, а для отключения и ремонта поврежденного участка размыкаются b и c. На время ремонта потребители П1, П2 и П3 получают питание по участку 1–2–5, а П4 – по участку 3.
Разомкнутые сети бывают одно- и двухступенчатыми. В одноступенчатых сетях (см. Error: Reference source not found и Error: Reference source not found) потребители непосредственно связаны с центральным распределительным пунктом (центром питания). Так в основном реализуются сети низкого напряжения для питания нагрузки небольшой мощности. В двухступенчатых распределительных сетях 6–20 кВ центр питания может быть соединен с распределительным пунктом, от которого уже отходят линии непосредственно к узлам нагрузки.
В районных распределительных сетях электроэнергия к потребителям распределяется от центров питания, под которыми понимаются шины распределительных устройств вторичного напряжения (110–220 кВ) крупных понижающих подстанций ЭЭС или шины такого же напряжения распределительных устройств электростанций. Эти сети имеют, как правило, достаточно сложную структуру, определяемую географическими условиями, распределением нагрузок, размещением источников электроэнергии. Многообразие и несхожесть этих условий для разных районов страны приводит к большому количеству различных конфигураций. Как и для местных распределительных сетей, здесь используют радиальные, магистральные и смешанные схемы. Кроме того, для районных распределительных сетей широко используют замкнутые и сложно-замкнутые схемы.
Замкнутыми называют сети, питающие потребителей по меньшей мере с двух сторон. Сложно-замкнутой называется многоконтурная сеть.
Наиболее простой формой замкнутой сети является одноконтурная кольцевая схема (в отличие от петлевой – нормально замкнутая). В примере кольцевой схемы, показанной на Error: Reference source not found, пять подстанций (ПС) получают питание от центра питания (ЦП). Присоединение к разным системам шин центра питания повышает надежность электроснабжения за счет двухстороннего питания каждого потребителя. Дальнейшее повышение надежности может быть обеспечено с использованием двух центров питания и двойных линий. Замкнутая одинарная и двойная сети для трех подстанций с питанием от двух центров показаны на Error: Reference source not found–а и Error: Reference source not found–б соответственно.
Заметим, что двойные линии используются для повышения надежности любой конфигурации сети, замкнутой или разомкнутой.
На последующих этапах развития может сформироваться многоконтурная схема. Создание такой сети определяется необходимостью создания узловых подстанций (с присоединением трех и более линий) и дальнейшим повышением надежности электроснабжения потребителей. В таких схемах количество центров питания может быть самым различным. Пример конфигурации сложно-замкнутой многоконтурной сети пяти подстанций, получающих питание от трех центров, показан на Error: Reference source not found.
Как уже отмечалось, для региональных системообразующих сетей передачи электроэнергии напряжением от 330 кВ и выше характерны большая протяженность (сотни км) и большая передаваемая мощности (сотни МВт). По конфигурации это наиболее простые сети, представляющие собой магистраль: электростанция – ЛЭП – приемная узловая подстанция [2, 6, 9, 10].