
- •Содержание
- •Лекционный курс
- •1. Теоретические основы передачи и распределения электроэнергии
- •2. Системотехника передачи и распределения электроэнергии
- •2.1. Электроэнергетические системы
- •2.2. Сети передачи и распределения электроэнергии
- •2.2.1. Структура и функции сетей п и рэ
- •2.2.2. Основные требования к сетям п и рэ
- •2.3. Классификация сетей передачи и распределения электроэнергии
- •2.3.1. По признакам, связанным с номинальным напряжением
- •2.3.2. По роду тока
- •2.3.3. По конфигурации
- •2.3.4. По конструктивному исполнению
- •2.4. Элементы сетей передачи и распределения электроэнергии
- •2.4.1. Параметры и схемы замещения линий электропередач
- •2.4.2. Параметры и схемы замещения трансформаторов
- •2.4.3. Учет электрических нагрузок
- •2.4.4. Графики электрических нагрузок
- •2.4.5. Потери мощности и электроэнергии в электрических сетях
- •3. Режимы сетей передачи и распределения электроэнергии
- •3.1. Виды режимов электроэнергетических систем. Общие положения расчета установившихся режимов
- •3.2. Расчеты установившихся режимов разомкнутых сетей с одним источником питания
- •3.2.1. Расчетные нагрузки узлов электрической сети
- •3.2.2. Расчет режима разомкнутой сети по напряжению, заданному в конце сети
- •3.2.3. Расчет режима разомкнутой сети по напряжению, заданному в начале сети
- •3.2.4. Расчет напряжения на вторичной обмотке трансформатора
- •3.2.5. Особенности расчета местных электрических сетей
- •3.3. Расчеты установившихся режимов замкнутых сетей
- •3.4. Регулирование режимов систем передачи и распределения электроэнергии
- •3.4.1. Регулирование частоты и активной мощности
- •3.4.2. Регулирование напряжения и реактивной мощности
- •4. Основы типового проектирования сетей передачи и распределения электроэнергии
- •4.1. Типовые схемы внешнего электроснабжения предприятий
- •4.2. Выбор номинального напряжения сети
- •4.3. Выбор сечений воздушных и кабельных линий
- •4.3.1. Экономические критерии выбора
- •4.3.2. Технические критерии выбора сечений проводов воздушных линий
- •4.3.2. Технические критерии выбора жил кабельных линий
- •4.4. Выбор схем присоединения понижающих подстанций и трансформаторов на понижающих подстанциях
- •Аппаратный лабораторный практикум Лабораторная работа №1. Регулирование напряжения в электрических сетях
- •Теоретические сведения
- •Описание лабораторного стенда нтц–67 «Распределительные сети систем энергоснабжения »
- •Ход выполнения работы Эксперимент №1. Регулирование напряжения методом изменения коэффициента трансформации
- •Эксперимент №2. Регулирование напряжения методом поперечной компенсации мощности конденсаторной батареей
- •Эксперимент №3. Регулирование напряжения методом продольной компенсации мощности конденсаторной батареей
- •Варианты индивидуальных заданий
- •Задания на защиту лабораторной работы
- •Лабораторная работа №2. Исследование установившихся режимов работы разомкнутой распределительной электрической сети
- •Теоретические сведения
- •Ход выполнения работы Эксперимент №1. Измерение параметров установившегося режима работы трансформатора
- •Эксперимент №2. Исследование параметров установившегося режима разомкнутой распределительной электрической сети
- •Варианты индивидуальных заданий
- •Задания на защиту лабораторной работы
- •Виртуальный лабораторный практикум (часть 1) Работа №1. Моделирование простейших электрических цепей в программном обеспечении схемотехнической сапр
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Основы работы с пакетом CircuitMaker
- •Пример 1. Моделирование участка электрической цепи с активным сопротивлением
- •Пример 2. Моделирование участка электрической цепи с активно-индуктивным сопротивлением
- •Типичные ошибки моделирования и способы их исправления
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №2. Математическое моделирование простейших электрических цепей
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Основы работы с пакетом MathCad
- •Пример 1. Анализ участка электрической цепи с активным сопротивлением
- •Пример 2. Анализ участка электрической цепи с активно-индуктивным сопротивлением
- •Задания на защиту работы
- •Работа №3. Исследование режимов передачи мощности по линиям электропередачи
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №4. Исследование п-образной схемы замещения линий электропередач
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Задания на защиту работы
- •Виртуальный лабораторный практикум (часть 2) Работа №1. Исследование схем замещения трансформаторов и автотрансформаторов
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Пример 1. Использование программной анимации
- •Пример 2. Расчет параметров схемы замещения двухобмоточного трансформатора
- •Пример 3. Расчет параметров схемы замещения автотрансформатора
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №2. Расчет и анализ регулирующего эффекта нагрузки электроэнергетической системы по напряжению
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №3. Построение и расчет параметров суточных графиков нагрузки
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Пример выполнения расчета по ходу выполнения работы
- •Дополнительные рекомендации по выполнению индивидуальных вариантов
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №4. Расчет и анализ параметров упорядоченных сезонных графиков нагрузки. Расчет нагрузочных потерь
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №5. Режим холостого хода линий электропередач с установками поперечной компенсации
- •Теоретические сведения
- •Ход выполнения работы
- •Часть 1
- •Часть 2
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Часть 1
- •Часть 2
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №6. Режим линий электропередач с продольной компенсацией
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Литература
Задания на защиту работы
Целью защиты лабораторной работы является проверка самостоятельности ее выполнения и понимания полученных результатов. В процессе защиты работы студент должен по заданию преподавателя продемонстрировать умения:
понимать разницу между типовой Г-образной схемой замещения трансформатора (см. рис. 26) и схемой замещения, реализованной в программе Lepsnv5.exe;
понимать принцип действия трансформатора и автотрансформатора и демонстрировать принцип действия с использованием программной анимации Lepsnv5.exe;
понимать назначение опытов короткого замыкания и холостого хода с точки зрения расчета схемы замещения трансформатора и демонстрировать опыты с использованием анимации Lepsnv5.exe;
понимать физический смысл параметров схем замещения трансформатора и автотрансформатора и демонстрировать физический смысл с использованием программной анимации Lepsnv5.exe;
понимать физический смысл исходных данных для расчета параметров схем замещения трансформаторов и автотрансформаторов и владеть навыками расчета параметров;
выполнять любой расчет п.2 хода выполнения работы для измененных исходных данных.
Работа №2. Расчет и анализ регулирующего эффекта нагрузки электроэнергетической системы по напряжению
Цель: Изучение 1) понятия положительного и отрицательного регулирующего эффекта нагрузки при изменении режима ЭЭС; 2) методики расчета регрессионных моделей статических характеристик нагрузки; 3) методики расчета регулирующих эффектов активной и реактивной нагрузки по полученным моделям статических характеристик.
Программное обеспечение: MathCAD.
Основные теоретические сведения: см. раздел 2.4.3.
Время выполнения: 2 часа.
Теоретические сведения
Регулирующим эффектом нагрузки ЭЭС по напряжению называется изменение активной или реактивной нагрузки ЭЭС при изменении напряжения, препятствующее данному возмущению.
Зависимость активной и реактивной мощности нагрузки от напряжения имеет вид статических характеристик (см. Error: Reference source not found). Рассмотрим, каким образом реагирует нагрузка на изменение режима в простейшей системе (Error: Reference source not found). В нормальном режиме работы на шинах нагрузки поддерживается номинальное напряжение. Потребитель берет из сети мощность равную P + jQ.
При постоянном напряжении в начале ЛЭП (U1 = const), напряжение на ее конце U2 может быть рассчитано следующим образом:
|
(90) |
где R и XL – активное и реактивное сопротивление ЛЭП (в представлении ее схемой замещения вида Error: Reference source not found–б).
Предположим, что напряжение в конце ЛЭП уменьшилось. В соответствии со статическими характеристиками (см. Error: Reference source not found), активная и реактивная мощность потребителя также будут уменьшаться, следовательно, будут уменьшаться и мощность в конце ЛЭП и потеря напряжения U12, т.е. напряжение в конце ЛЭП будет увеличиваться (обратите внимание, U2 входит и в левую и в правую часть выражения (90).
Этот вывод справедлив, если напряжение в конце ЛЭП больше критического Uкр, которое соответствует точке минимума Q(U) на Error: Reference source not found и составляет, как правило, 0,7…0,8 от Uном.
Таким образом, при напряжениях больше критического, нагрузка, изменяя свою мощность, стремится поддержать неизменным напряжение на своих шинах. В этом случае говорят о положительном регулирующем эффекте нагрузки.
При напряжениях меньше критического проявляется отрицательный регулирующий эффект нагрузки: активная мощность потребителя в соответствии со статическими характеристиками продолжает уменьшаться, а потребление реактивной мощности начинает возрастать (см. Error: Reference source not found), причем, значение реактивной мощности увеличивается в большей степени, чем снижение активной. Потеря напряжения U12 увеличивается, а напряжение U2 на шинах нагрузки снижается. Это приводит к увеличению потребления реактивной мощности и дальнейшему снижению напряжения U2 и т.д. Возникает явление, которое называется лавиной напряжения. При такой аварии тормозятся асинхронные двигатели. Реактивная мощность асинхронных двигателей растет, баланс реактивной мощности нарушается, причем потребление реактивной мощности в значительной мере превышает выработку. Это в свою очередь приводит к понижению напряжения. Остановить снижение напряжения при этой аварии можно, лишь отключив нагрузку.
Чтобы напряжение не снижалось ниже критического на генераторах и мощных синхронных двигателях устанавливаются автоматические регуляторы возбуждения (АРВ). Под их действием генераторы и синхронные двигатели увеличивают выработку реактивной мощности.
Количественно регулирующие эффекты нагрузки определяются по статическим характеристикам, построенным в относительных единицах (см. Error: Reference source not found), как производные dP/dU и dQ/dU в какой-либо точке характеристики, например при U = Uном. Реальные статические характеристики для каждого типа электрической нагрузки и их совокупностей могут быть получены только экспериментально. Для расчета регулирующих эффектов нагрузки экспериментальные данные обобщаются и представляются в виде полиномиальных математических моделей вида:
|
(91) |
|
(92) |
где P(U) и Q(U) – статические характеристики нагрузки в относительных единицах; aP, bP, cP, aQ, bQ и cQ – коэффициенты моделей, полученных в результате обработки экспериментальных данных методами регрессионного анализа. Статические характеристики в абсолютных единицах можно получить, умножив правые части (91) и (92) на величины активной и реактивной мощности нагрузки при номинальном напряжении [21, 22].
Регрессионный анализ состоит в поиске коэффициентов уравнения, вид которого задает исследователь, по экспериментальным данным. Так, в уравнении (91) часто принимают aP = 0, т.е. в качестве аппроксимирующей функции выбирают линейную зависимость активной мощности от напряжения, что достаточно точно соответствует реальному виду этой зависимости (см. Error: Reference source not found). Поиск значения коэффициентов регрессионной модели осуществляется по условию минимум среднеквадратических отклонений расчетных значений от экспериментальных.