
- •Содержание
- •Лекционный курс
- •1. Теоретические основы передачи и распределения электроэнергии
- •2. Системотехника передачи и распределения электроэнергии
- •2.1. Электроэнергетические системы
- •2.2. Сети передачи и распределения электроэнергии
- •2.2.1. Структура и функции сетей п и рэ
- •2.2.2. Основные требования к сетям п и рэ
- •2.3. Классификация сетей передачи и распределения электроэнергии
- •2.3.1. По признакам, связанным с номинальным напряжением
- •2.3.2. По роду тока
- •2.3.3. По конфигурации
- •2.3.4. По конструктивному исполнению
- •2.4. Элементы сетей передачи и распределения электроэнергии
- •2.4.1. Параметры и схемы замещения линий электропередач
- •2.4.2. Параметры и схемы замещения трансформаторов
- •2.4.3. Учет электрических нагрузок
- •2.4.4. Графики электрических нагрузок
- •2.4.5. Потери мощности и электроэнергии в электрических сетях
- •3. Режимы сетей передачи и распределения электроэнергии
- •3.1. Виды режимов электроэнергетических систем. Общие положения расчета установившихся режимов
- •3.2. Расчеты установившихся режимов разомкнутых сетей с одним источником питания
- •3.2.1. Расчетные нагрузки узлов электрической сети
- •3.2.2. Расчет режима разомкнутой сети по напряжению, заданному в конце сети
- •3.2.3. Расчет режима разомкнутой сети по напряжению, заданному в начале сети
- •3.2.4. Расчет напряжения на вторичной обмотке трансформатора
- •3.2.5. Особенности расчета местных электрических сетей
- •3.3. Расчеты установившихся режимов замкнутых сетей
- •3.4. Регулирование режимов систем передачи и распределения электроэнергии
- •3.4.1. Регулирование частоты и активной мощности
- •3.4.2. Регулирование напряжения и реактивной мощности
- •4. Основы типового проектирования сетей передачи и распределения электроэнергии
- •4.1. Типовые схемы внешнего электроснабжения предприятий
- •4.2. Выбор номинального напряжения сети
- •4.3. Выбор сечений воздушных и кабельных линий
- •4.3.1. Экономические критерии выбора
- •4.3.2. Технические критерии выбора сечений проводов воздушных линий
- •4.3.2. Технические критерии выбора жил кабельных линий
- •4.4. Выбор схем присоединения понижающих подстанций и трансформаторов на понижающих подстанциях
- •Аппаратный лабораторный практикум Лабораторная работа №1. Регулирование напряжения в электрических сетях
- •Теоретические сведения
- •Описание лабораторного стенда нтц–67 «Распределительные сети систем энергоснабжения »
- •Ход выполнения работы Эксперимент №1. Регулирование напряжения методом изменения коэффициента трансформации
- •Эксперимент №2. Регулирование напряжения методом поперечной компенсации мощности конденсаторной батареей
- •Эксперимент №3. Регулирование напряжения методом продольной компенсации мощности конденсаторной батареей
- •Варианты индивидуальных заданий
- •Задания на защиту лабораторной работы
- •Лабораторная работа №2. Исследование установившихся режимов работы разомкнутой распределительной электрической сети
- •Теоретические сведения
- •Ход выполнения работы Эксперимент №1. Измерение параметров установившегося режима работы трансформатора
- •Эксперимент №2. Исследование параметров установившегося режима разомкнутой распределительной электрической сети
- •Варианты индивидуальных заданий
- •Задания на защиту лабораторной работы
- •Виртуальный лабораторный практикум (часть 1) Работа №1. Моделирование простейших электрических цепей в программном обеспечении схемотехнической сапр
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Основы работы с пакетом CircuitMaker
- •Пример 1. Моделирование участка электрической цепи с активным сопротивлением
- •Пример 2. Моделирование участка электрической цепи с активно-индуктивным сопротивлением
- •Типичные ошибки моделирования и способы их исправления
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №2. Математическое моделирование простейших электрических цепей
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Основы работы с пакетом MathCad
- •Пример 1. Анализ участка электрической цепи с активным сопротивлением
- •Пример 2. Анализ участка электрической цепи с активно-индуктивным сопротивлением
- •Задания на защиту работы
- •Работа №3. Исследование режимов передачи мощности по линиям электропередачи
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №4. Исследование п-образной схемы замещения линий электропередач
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Задания на защиту работы
- •Виртуальный лабораторный практикум (часть 2) Работа №1. Исследование схем замещения трансформаторов и автотрансформаторов
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Пример 1. Использование программной анимации
- •Пример 2. Расчет параметров схемы замещения двухобмоточного трансформатора
- •Пример 3. Расчет параметров схемы замещения автотрансформатора
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №2. Расчет и анализ регулирующего эффекта нагрузки электроэнергетической системы по напряжению
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №3. Построение и расчет параметров суточных графиков нагрузки
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Пример выполнения расчета по ходу выполнения работы
- •Дополнительные рекомендации по выполнению индивидуальных вариантов
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №4. Расчет и анализ параметров упорядоченных сезонных графиков нагрузки. Расчет нагрузочных потерь
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №5. Режим холостого хода линий электропередач с установками поперечной компенсации
- •Теоретические сведения
- •Ход выполнения работы
- •Часть 1
- •Часть 2
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Часть 1
- •Часть 2
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №6. Режим линий электропередач с продольной компенсацией
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Литература
Аппаратный лабораторный практикум Лабораторная работа №1. Регулирование напряжения в электрических сетях
Цель: Изучение метода изменения коэффициента трансформации трансформаторов и метода компенсации реактивной мощности.
Аппаратное обеспечение: Лабораторный стенд НТЦ–67 «Распределительные сети систем энергоснабжения».
Время выполнения: 4 часа.
Теоретические сведения
Отклонения уровня напряжения от номинального значения, как в сторону повышения, так и в сторону понижения отрицательно сказываются на работе потребителей электроэнергии: приводит к ухудшению условий работы оборудования, снижению производительности механизмов, сокращению срока службы электрооборудования, браку продукции. Нормально допустимые и предельно допустимые значения установившегося отклонения напряжения на выводах приемников электрической энергии, регламентируемые ГОСТ 13109–97, равны соответственно 5% и 10%.
Напряжение на шинах низшего напряжения приемной подстанции (Error: Reference source not found) определяется как:
|
(88) |
где kT – коэффициент трансформации трансформатора; Uг – напряжение на шинах генератора; Uв – напряжение на шинах высшего напряжения приемной подстанции; P и Q – активная и реактивная мощность, передаваемая по линии; R и X – активное и реактивное сопротивления питающей линии трансформатора.
Из выражения (88) следует, что регулировать напряжение Uн на шинах у потребителей можно следующими методами:
изменением напряжения Uг на шинах генератора;
изменением коэффициента трансформации kT трансформатора, установленного на подстанции;
изменением реактивной мощности Q, передаваемой по линии, что может осуществляться с использованием синхронных компенсаторов или конденсаторных батарей.
Генераторы электростанций в общем случае являются вспомогательным средством регулирования напряжения в электрической сети и могут служить основным средством регулирования напряжения только для потребителей, получающих питание непосредственно с шин генераторного напряжения.
Рассмотрим подробно прочие методы регулирования напряжения.
Метод изменения коэффициента трансформации. Коэффициент трансформации определяется отношением витков первичной и вторичной обмоток трансформатора. Трансформаторы (автотрансформаторы) имеют специальные ответвления от обмоток, позволяющие изменять коэффициент трансформации и, следовательно, регулировать напряжение. Переключение ответвлений может осуществляться устройством переключения без возбуждения (ПБВ) при отключении трансформатора от сети или устройством регулирования под нагрузкой (РПН) без отключения трансформатора от сети.
Принципиальная схема одной фазы линейного трехфазного трансформатора с РПН приведена на Error: Reference source not found.
Рассмотрим работу переключающего устройства РПН, состоящего из неподвижных контакторов К1 и К2, подвижных контактов – избирателей И1 и И2 и токоограничивающего реактора, в среднюю точку которого включен вывод нерегулируемой обмотки возбуждения линейного последовательного трансформатора (см. Error: Reference source not found). В последовательной обмотке этого трансформатора, включенной в рассечку линии, наводится добавочная э. д. с., величина которой зависит от положения избирателей на регулировочной обмотке, а направление – от положения переключателя. Ток, питающий обмотку возбуждения последовательного трансформатора, проходит через ветви реактора в противоположных направлениях, вследствие чего результирующий магнитный поток в реакторе очень мал и его сопротивление незначительно.
Если по условиям регулирования напряжения необходимо переключиться с одного ответвления на другое, то для этого отключается контактор К1, а избиратель И1 переключается на нужное ответвление, после чего контактор К1 включается. Секция обмотки между двумя соседними ответвлениями оказывается замкнутой через избиратели на реактор. Токи замыкания в обеих частях реактора совпадают по направлению, результирующий магнитный поток и индуктивное сопротивление реактора увеличиваются, чем достигается эффективное ограничение тока в замкнутой части обмотки. Далее отключается контактор К2, избиратель И2 переключается на тоже ответвление, что и И1, после чего контактор К1 включается.
После достижения последней ступени 9 переключатель реверса переходит в положение 3, а избиратели, вращаясь по кругу, в положение 1. Направление э. д. с. в последовательной обмотке изменится на обратное, и процесс дальнейшего регулирования напряжения будет протекать, как описано выше, с переходом избирателей от контакта 1 к контакту 9.
Трансформаторы с устройством РПН позволяют регулировать напряжение при изменении нагрузки в течение суток. Такие трансформаторы оборудуются автоматическими регуляторами напряжения, которые реагируют на изменения напряжения на вторичной обмотке трансформатора, давая команды на переключение ответвлений РПН согласно заданному закону регулирования напряжения.
Метод компенсации реактивной мощности рассмотрим на примере использования конденсаторных батарей. Включение конденсаторных батарей параллельно нагрузке называется поперечной компенсацией, последовательно – продольной компенсацией.
Поперечная компенсация применяется в основном для повышения величины коэффициента мощности cos . Коэффициент мощности характеризует качество потребления электроэнергии на предприятии: его снижение приводит к повышению расхода электроэнергии и ее стоимости. При включении мощности параллельно нагрузке угол уменьшается, в результате уменьшается ток электроприемника, т.е. происходит разгрузка линии по току. На туже величину разгружается и генератор, за счет чего и уменьшаются потери.
Продольная емкостная компенсация применяется в основном как способ регулирования и стабилизации напряжения за счет частичной компенсации индуктивного сопротивления участков электросети для уменьшения потерь напряжения в них. Компенсация индуктивного сопротивления емкостью приводит к повышению токов короткого замыкания во всех элементах трансформаторной подстанции, что особенно опасно для самих конденсаторов. Поэтому в установках продольной компенсации емкость выбирается из расчета, чтобы емкостное напряжение не превышало 5…20% номинального, т.е. емкость продольной компенсации компенсирует только часть мощности.
Принципиальная схема продольной компенсации показан на Error: Reference source not found. Шунтирующий разъединитель служит для вывода конденсаторов из работы. Для защиты от перенапряжений при сверхтоках используется спекающийся быстродействующий разрядник с токоограничивающим резистором R. Трансформатор напряжения служит для измерения напряжения, а также для разрядки конденсаторов при снятии напряжения.
Основное достоинство устройств продольной компенсации заключается в автоматическом и безынерционном регулировании напряжения. Отсутствие механически движущихся частей и контактов делает эти установки весьма простыми и надежными в эксплуатации. При одинаковом регулирующем эффекте мощность конденсаторов получается в 4–5 раз меньше, чем мощность обычной конденсаторной батареи поперечной компенсации, выбранной только для регулирования напряжения.
Недостатком метода является высокая стоимость установок продольной компенсации и необходимость специальной защиты от токов короткого замыкания.