
- •Содержание
- •Лекционный курс
- •1. Теоретические основы передачи и распределения электроэнергии
- •2. Системотехника передачи и распределения электроэнергии
- •2.1. Электроэнергетические системы
- •2.2. Сети передачи и распределения электроэнергии
- •2.2.1. Структура и функции сетей п и рэ
- •2.2.2. Основные требования к сетям п и рэ
- •2.3. Классификация сетей передачи и распределения электроэнергии
- •2.3.1. По признакам, связанным с номинальным напряжением
- •2.3.2. По роду тока
- •2.3.3. По конфигурации
- •2.3.4. По конструктивному исполнению
- •2.4. Элементы сетей передачи и распределения электроэнергии
- •2.4.1. Параметры и схемы замещения линий электропередач
- •2.4.2. Параметры и схемы замещения трансформаторов
- •2.4.3. Учет электрических нагрузок
- •2.4.4. Графики электрических нагрузок
- •2.4.5. Потери мощности и электроэнергии в электрических сетях
- •3. Режимы сетей передачи и распределения электроэнергии
- •3.1. Виды режимов электроэнергетических систем. Общие положения расчета установившихся режимов
- •3.2. Расчеты установившихся режимов разомкнутых сетей с одним источником питания
- •3.2.1. Расчетные нагрузки узлов электрической сети
- •3.2.2. Расчет режима разомкнутой сети по напряжению, заданному в конце сети
- •3.2.3. Расчет режима разомкнутой сети по напряжению, заданному в начале сети
- •3.2.4. Расчет напряжения на вторичной обмотке трансформатора
- •3.2.5. Особенности расчета местных электрических сетей
- •3.3. Расчеты установившихся режимов замкнутых сетей
- •3.4. Регулирование режимов систем передачи и распределения электроэнергии
- •3.4.1. Регулирование частоты и активной мощности
- •3.4.2. Регулирование напряжения и реактивной мощности
- •4. Основы типового проектирования сетей передачи и распределения электроэнергии
- •4.1. Типовые схемы внешнего электроснабжения предприятий
- •4.2. Выбор номинального напряжения сети
- •4.3. Выбор сечений воздушных и кабельных линий
- •4.3.1. Экономические критерии выбора
- •4.3.2. Технические критерии выбора сечений проводов воздушных линий
- •4.3.2. Технические критерии выбора жил кабельных линий
- •4.4. Выбор схем присоединения понижающих подстанций и трансформаторов на понижающих подстанциях
- •Аппаратный лабораторный практикум Лабораторная работа №1. Регулирование напряжения в электрических сетях
- •Теоретические сведения
- •Описание лабораторного стенда нтц–67 «Распределительные сети систем энергоснабжения »
- •Ход выполнения работы Эксперимент №1. Регулирование напряжения методом изменения коэффициента трансформации
- •Эксперимент №2. Регулирование напряжения методом поперечной компенсации мощности конденсаторной батареей
- •Эксперимент №3. Регулирование напряжения методом продольной компенсации мощности конденсаторной батареей
- •Варианты индивидуальных заданий
- •Задания на защиту лабораторной работы
- •Лабораторная работа №2. Исследование установившихся режимов работы разомкнутой распределительной электрической сети
- •Теоретические сведения
- •Ход выполнения работы Эксперимент №1. Измерение параметров установившегося режима работы трансформатора
- •Эксперимент №2. Исследование параметров установившегося режима разомкнутой распределительной электрической сети
- •Варианты индивидуальных заданий
- •Задания на защиту лабораторной работы
- •Виртуальный лабораторный практикум (часть 1) Работа №1. Моделирование простейших электрических цепей в программном обеспечении схемотехнической сапр
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Основы работы с пакетом CircuitMaker
- •Пример 1. Моделирование участка электрической цепи с активным сопротивлением
- •Пример 2. Моделирование участка электрической цепи с активно-индуктивным сопротивлением
- •Типичные ошибки моделирования и способы их исправления
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №2. Математическое моделирование простейших электрических цепей
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Основы работы с пакетом MathCad
- •Пример 1. Анализ участка электрической цепи с активным сопротивлением
- •Пример 2. Анализ участка электрической цепи с активно-индуктивным сопротивлением
- •Задания на защиту работы
- •Работа №3. Исследование режимов передачи мощности по линиям электропередачи
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №4. Исследование п-образной схемы замещения линий электропередач
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Задания на защиту работы
- •Виртуальный лабораторный практикум (часть 2) Работа №1. Исследование схем замещения трансформаторов и автотрансформаторов
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Пример 1. Использование программной анимации
- •Пример 2. Расчет параметров схемы замещения двухобмоточного трансформатора
- •Пример 3. Расчет параметров схемы замещения автотрансформатора
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №2. Расчет и анализ регулирующего эффекта нагрузки электроэнергетической системы по напряжению
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №3. Построение и расчет параметров суточных графиков нагрузки
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Пример выполнения расчета по ходу выполнения работы
- •Дополнительные рекомендации по выполнению индивидуальных вариантов
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №4. Расчет и анализ параметров упорядоченных сезонных графиков нагрузки. Расчет нагрузочных потерь
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №5. Режим холостого хода линий электропередач с установками поперечной компенсации
- •Теоретические сведения
- •Ход выполнения работы
- •Часть 1
- •Часть 2
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Часть 1
- •Часть 2
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №6. Режим линий электропередач с продольной компенсацией
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Литература
3.2.4. Расчет напряжения на вторичной обмотке трансформатора
В рассмотренных выше расчетах
установившихся режимов районных
электрических сетей определялись
напряжения в узлах, соответствующие
напряжениям на первичной обмотке
трансформаторов подстанций. Для
определения действительного напряжения
на вторичной обмотке трансформаторов
рассмотрим произвольный i-тый узел
электрической сети (Error: Reference source not found–а)
и схему замещения фрагмента понижающей
подстанции (Error: Reference source not found–б).
Нагрузка подстанции (см. Error: Reference source not found–а) Sнi задана на шинах вторичного напряжения трансформатора. В результате расчета установившегося режима электрической сети известно напряжение Ui на первичной обмотке трансформатора. Необходимо определить действительное напряжение на вторичной обмотке трансформатора Ui’’. Такой расчет необходим для оценки величины этого напряжения и необходимости его регулирования с целью обеспечения требуемого качества электроэнергии у потребителей.
В схеме замещения (Error: Reference source not found–б) трансформатор представлен Г–образной схемой замещения (∆Sx, ZТ) и идеальным трансформатором (трансформатором без потерь мощности) с коэффициентом трансформации:
,
где Uвн, Uнн – номинальные напряжения первичной и вторичной обмоток
трансформатора.
Расчет действительного напряжения на вторичной обмотке трансформатора выполняется в следующей последовательности. Определяется величина падения напряжения в трансформаторе:
|
(69) |
В формуле (69) используется номинальное напряжение сети Uном, поскольку нагрузка задана на шинах вторичного напряжения трансформатора, а напряжение известно на его первичной обмотке.
Напряжение на вторичной обмотке трансформатора, приведенное к первичному напряжению, составляет:
|
(70) |
Действительная величина напряжения на вторичной обмотке трансформатора определяется, с учетом коэффициента трансформации kТ, по выражению:
|
(71) |
По величине напряжения Ui’’ оценивают необходимость его регулирования [10, 19].
3.2.5. Особенности расчета местных электрических сетей
Местные распределительные сети включают в себя воздушные линии напряжением до 35 кВ включительно. Такие сети выполняются, как правило, разомкнутыми. Рассмотренные выше методы расчета районных распределительных сетей напряжением до 220 кВ справедливы и для расчета местных электрических сетей. Однако в силу специфики местных сетей, а именно меньших напряжений и меньших длин линий электропередачи чем у районных сетей, для расчета местных сетей принимают ряд упрощающих допущений:
в ЛЭП не учитывается емкостная проводимость и, следовательно, зарядная мощность (схемы замещения – в соответствии с Error: Reference source not found–а, б), в трансформаторах не учитываются потери холостого хода ∆Рх и ∆Qx –схемы замещения элементов местной электрической сети содержат только продольные активные и реактивные сопротивления;
потокораспределение в местной электрической сети рассчитывается без учета потерь мощности в ее элементах. Это потокораспределение обусловлено только величинами нагрузок в узлах электрической сети, а мощности в начале и конце каждой линии сети принимаются равными между собой. Мощность, протекающая по любой линии местной сети, равна сумме нагрузок, расположенных в конце этой линии и далее в сторону, противоположную центру питания;
при расчете местной сети пренебрегают поперечной составляющей падения напряжения в линиях электропередачи и трансформаторах, и рассчитывают только продольную.
Для примера схемы разветвленной местной электросети (Error: Reference source not found) мощность, протекающая, например, по линии между узлами 2 и 3 равна:
S23 = S3 + S4 + S5 + S6 + S7 + S8.
Потоки мощности в других линиях определяются аналогично.
Продольная составляющая падения напряжения в линии между узлами i и j определяется как:
.
Эта продольная составляющая падения напряжения, приблизительно равная алгебраической разности напряжений в начале и конце линии, называется потерей напряжения.
Потерю напряжения в линиях и трансформаторах местной электрической сети выражают, как правило, в процентах или долях от номинального напряжения сети Uном.
Достаточно жесткие требования к качеству электроэнергии со стороны потребителей в местных электрических сетях ограничивают наибольшую потерю напряжения ∆Umax в этих сетях величиной допустимой потери напряжения ∆Uдоп = 0,06Uном. Наибольшая потеря напряжения есть алгебраическая разность между напряжением в центре питания (ЦП) местной сети и узлом сети с самым низким напряжением.
Для определения наибольшей потери напряжения в разветвленной местной электрической сети рассчитываются суммарные потери напряжения ∆UΣk от ЦП до каждого k-того конечного (тупикового) потребителя, из полученных значений выбирается наибольшее значение (∆Umax ), которое сравнивается с допустимой потерей.
Для схемы на Error: Reference source not found k = 5, 8, 10, и суммарные потери напряжения от ЦП до узлов 5, 8 и 10 составляют:
∆UΣ5 = ∆UЦП,1 + ∆U12 + ∆U23 + ∆U34 + ∆U45;
∆UΣ8 = ∆UЦП,1 + ∆U12 + ∆U23 + ∆U36 + ∆U67 + ∆U78;
∆UΣ10 = ∆UЦП,1 + ∆U19 + ∆U9,10.
Из найденных значений ∆UΣ5, ∆UΣ8, и ∆UΣ10 выбирается максимальное, принимается за ∆Umax и сравнивается с допустимой потерей напряжения ∆Uдоп = 0,06Uном [10, 19, 21].