
- •Содержание
- •Лекционный курс
- •1. Теоретические основы передачи и распределения электроэнергии
- •2. Системотехника передачи и распределения электроэнергии
- •2.1. Электроэнергетические системы
- •2.2. Сети передачи и распределения электроэнергии
- •2.2.1. Структура и функции сетей п и рэ
- •2.2.2. Основные требования к сетям п и рэ
- •2.3. Классификация сетей передачи и распределения электроэнергии
- •2.3.1. По признакам, связанным с номинальным напряжением
- •2.3.2. По роду тока
- •2.3.3. По конфигурации
- •2.3.4. По конструктивному исполнению
- •2.4. Элементы сетей передачи и распределения электроэнергии
- •2.4.1. Параметры и схемы замещения линий электропередач
- •2.4.2. Параметры и схемы замещения трансформаторов
- •2.4.3. Учет электрических нагрузок
- •2.4.4. Графики электрических нагрузок
- •2.4.5. Потери мощности и электроэнергии в электрических сетях
- •3. Режимы сетей передачи и распределения электроэнергии
- •3.1. Виды режимов электроэнергетических систем. Общие положения расчета установившихся режимов
- •3.2. Расчеты установившихся режимов разомкнутых сетей с одним источником питания
- •3.2.1. Расчетные нагрузки узлов электрической сети
- •3.2.2. Расчет режима разомкнутой сети по напряжению, заданному в конце сети
- •3.2.3. Расчет режима разомкнутой сети по напряжению, заданному в начале сети
- •3.2.4. Расчет напряжения на вторичной обмотке трансформатора
- •3.2.5. Особенности расчета местных электрических сетей
- •3.3. Расчеты установившихся режимов замкнутых сетей
- •3.4. Регулирование режимов систем передачи и распределения электроэнергии
- •3.4.1. Регулирование частоты и активной мощности
- •3.4.2. Регулирование напряжения и реактивной мощности
- •4. Основы типового проектирования сетей передачи и распределения электроэнергии
- •4.1. Типовые схемы внешнего электроснабжения предприятий
- •4.2. Выбор номинального напряжения сети
- •4.3. Выбор сечений воздушных и кабельных линий
- •4.3.1. Экономические критерии выбора
- •4.3.2. Технические критерии выбора сечений проводов воздушных линий
- •4.3.2. Технические критерии выбора жил кабельных линий
- •4.4. Выбор схем присоединения понижающих подстанций и трансформаторов на понижающих подстанциях
- •Аппаратный лабораторный практикум Лабораторная работа №1. Регулирование напряжения в электрических сетях
- •Теоретические сведения
- •Описание лабораторного стенда нтц–67 «Распределительные сети систем энергоснабжения »
- •Ход выполнения работы Эксперимент №1. Регулирование напряжения методом изменения коэффициента трансформации
- •Эксперимент №2. Регулирование напряжения методом поперечной компенсации мощности конденсаторной батареей
- •Эксперимент №3. Регулирование напряжения методом продольной компенсации мощности конденсаторной батареей
- •Варианты индивидуальных заданий
- •Задания на защиту лабораторной работы
- •Лабораторная работа №2. Исследование установившихся режимов работы разомкнутой распределительной электрической сети
- •Теоретические сведения
- •Ход выполнения работы Эксперимент №1. Измерение параметров установившегося режима работы трансформатора
- •Эксперимент №2. Исследование параметров установившегося режима разомкнутой распределительной электрической сети
- •Варианты индивидуальных заданий
- •Задания на защиту лабораторной работы
- •Виртуальный лабораторный практикум (часть 1) Работа №1. Моделирование простейших электрических цепей в программном обеспечении схемотехнической сапр
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Основы работы с пакетом CircuitMaker
- •Пример 1. Моделирование участка электрической цепи с активным сопротивлением
- •Пример 2. Моделирование участка электрической цепи с активно-индуктивным сопротивлением
- •Типичные ошибки моделирования и способы их исправления
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №2. Математическое моделирование простейших электрических цепей
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Основы работы с пакетом MathCad
- •Пример 1. Анализ участка электрической цепи с активным сопротивлением
- •Пример 2. Анализ участка электрической цепи с активно-индуктивным сопротивлением
- •Задания на защиту работы
- •Работа №3. Исследование режимов передачи мощности по линиям электропередачи
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №4. Исследование п-образной схемы замещения линий электропередач
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Задания на защиту работы
- •Виртуальный лабораторный практикум (часть 2) Работа №1. Исследование схем замещения трансформаторов и автотрансформаторов
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Пример 1. Использование программной анимации
- •Пример 2. Расчет параметров схемы замещения двухобмоточного трансформатора
- •Пример 3. Расчет параметров схемы замещения автотрансформатора
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №2. Расчет и анализ регулирующего эффекта нагрузки электроэнергетической системы по напряжению
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №3. Построение и расчет параметров суточных графиков нагрузки
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения Пример выполнения расчета по ходу выполнения работы
- •Дополнительные рекомендации по выполнению индивидуальных вариантов
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №4. Расчет и анализ параметров упорядоченных сезонных графиков нагрузки. Расчет нагрузочных потерь
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №5. Режим холостого хода линий электропередач с установками поперечной компенсации
- •Теоретические сведения
- •Ход выполнения работы
- •Часть 1
- •Часть 2
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Часть 1
- •Часть 2
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Работа №6. Режим линий электропередач с продольной компенсацией
- •Теоретические сведения
- •Ход выполнения работы
- •Практические рекомендации по выполнению работы и использованию программного обеспечения
- •Варианты индивидуальных заданий
- •Задания на защиту работы
- •Литература
2.4.3. Учет электрических нагрузок
При расчете и анализе режимов сетей передачи и распределения электроэнергии, кроме характеристик их основных элементов – ЛЭП, трансформаторов и др., должны быть учтены и характеристики электрических нагрузок потребителей. Для решения задач анализа установившихся режимов необходима величина активной и реактивной мощности нагрузки.
Приемником электроэнергии называется аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии. Например, распространенным приемником электроэнергии является асинхронный двигатель, преобразующий электрическую энергию в механическую. Асинхронные двигатели различаются по мощности и всегда потребляют реактивную мощность. Синхронные двигатели в режиме перевозбуждения генерируют реактивную мощность.
Потребителем электроэнергии называется группа электроприемников, объединенных технологическим процессом и размещенных на определенной территории. Например, потребителями электроэнергии являются промышленное предприятие, его цеха, жилой дом и т.д. Существенную часть в потреблении электроэнергии составляют потери в сетях.
Режим работы электрической сети зависит от режима работы потребителей, получающих питание от этой сети. Так, например, для сети напряжением 110 кВ с понижающими подстанциями 110/10 кВ режим работы будет определяться мощностями, потребляемыми от шин 10 кВ каждой из подстанций. В этом случае совокупность потребителей, получающих питание от шин 10 кВ одной подстанции, принято называть комплексной нагрузкой или просто нагрузкой, а шины 10 кВ – узлом нагрузки. В зависимости от номинального напряжения рассчитываемой электрической сети, в качестве узлов нагрузки могут рассматриваться шины более высоких или более низких номинальных напряжений.
В состав комплексной нагрузки входят: асинхронные и синхронные двигатели, освещение, преобразователи тока, электрические печи, нагревательные приборы и т.п. Процентное соотношение составляющих комплексной нагрузки различно для промышленных, городских и сельскохозяйственных потребителей. Для промышленных потребителей преобладает двигательная нагрузка большой мощности, для городских и сельскохозяйственных потребителей – освещение, нагревательные приборы, двигатели небольшой мощности.
С другой стороны, в зонах городских и сельских потребителей имеются, как правило, промышленные предприятия небольшой мощности, а от шин главных заводских подстанций часто питаются и городские потребители. Поэтому деление нагрузки на промышленную, городскую и сельскохозяйственную часто носит условный характер [9, 10, 21].
Характерный примерный состав комплексной нагрузки, % [9, 21]:
асинхронные двигатели – от 48% до 50%;
освещение и бытовые потребители – от 22 до 25%;
выпрямители, инверторы, печи, нагревательные приборы – от 10 до 11%;
синхронные двигатели – от 9 до 10%;
потери в сетях – от 7 до 8%.
Наиболее существенной характеристикой нагрузки является величина ее активной Р и реактивной мощности Q.
Представление нагрузки в расчетных схемах.
Задание нагрузки током, неизменным по величине и фазе. В этом случае считается, что к шинам узла нагрузки с напряжением U подключен источник тока (Error: Reference source not found–а):
,
где
и
–
постоянные активная и реактивная
составляющие тока в узле нагрузки.
Величина тока определяется как:
,
где полная мощность нагрузки Sн может быть принята равной номинальной или максимальной мощности, а также мощности некоторого исходного или начального режима работы приемника или потребителя, а напряжение U – равным номинальному напряжению нагрузки или сети.
Такая форма представления нагрузки принимается при расчетах местных распределительных сетей напряжением U 35 кВ. Центрами питания таких сетей являются шины низшего напряжения подстанций 110…220/6…35 кВ. В низковольтных сетях значения напряжений изменяются в узких пределах и практически совпадают по фазе, поэтому и принимается такая форма представления нагрузки: Iн = const, cos = const. Активная и реактивная мощность нагрузки для этого случая:
Задание нагрузки постоянной мощностью. При расчетах местных и районных электрических сетей нагрузка часто задается постоянной мощностью (см. Error: Reference source not found–б):
,
где Pн и Qн – неизменные активная и реактивная составляющие мощности узла нагрузки: Pн = const и Qн = const.
Широкое использование способа задания нагрузки неизменной мощностью обусловлено тем, что расчеты электрических сетей ведутся, как правило, в мощностях, а не токах. Этот способ задания нагрузок оказывается достаточно точным для электрических сетей, снабженных устройствами регулирования напряжения, поддерживающими напряжение в узлах нагрузки в достаточно узком диапазоне допустимых отклонений напряжения от номинального значения.
Задание нагрузки постоянной проводимостью (сопротивлением). В этом случае считается, что к шинам узла нагрузки с напряжением U подключена неизменная проводимость (см. Error: Reference source not found–в):
,
или сопротивлением (см. Error: Reference source not found–г)
,
где Gн и Bн – активная и реактивная составляющие полной проводимости Yн; Rн и Xн – активная и реактивная составляющие полного сопротивления Zн нагрузки.
Для случая, приведенного на Error: Reference source not found–в, мощность нагрузки определяется соотношениями:
а для случая, приведенного на Error: Reference source not found–г, соотношениями:
Этот способ представления нагрузки используется, как правило, при расчетах переходных процессов в ЭЭС.
Задание нагрузки статическими характеристиками. Статическими характеристиками нагрузки по напряжению и частоте называются зависимости активной и реактивной составляющих мощности нагрузки от напряжения и частоты в узле ее подключения. Такой способ задания нагрузки более точно отражает ее свойства, чем в случае задания нагрузки неизменными током, мощностью или проводимостью (сопротивлением).
Точные статические характеристики конкретного узла нагрузки могут быть получены только экспериментальным путем, что далеко не всегда возможно и целесообразно. Статические характеристики нагрузок разных узлов отличаются друг от друга. Вместе с тем статические характеристики крупных узлов нагрузки, включающих промышленных и коммунально-бытовых потребителей, обладают общими свойствами. Такая общность свойств объясняется тем, что основную долю нагрузки составляют асинхронные двигатели и освещение. Эти приемники оказывают определяющее влияние на рассматриваемые характеристики.
В практике расчетов
установившихся режимов электрических
сетей используются обобщенные статические
характеристики комплексной нагрузки
по напряжению и частоте, приведенные в
относительных единицах на Error: Reference source not found
и Error: Reference source not found. Учет статических
характеристик нагрузки применяется,
как правило, для расчетов послеаварийных
установившихся режимов, когда напряжения
в узлах и частота в сети могут заметно
отличаться от номинальных значений [9,
10, 22].