Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2214_лекции.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
4.05 Mб
Скачать

4 Эффект Комптона

Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американ­ский физик А. Комптон, исследуя в 1923 г. рассеяние монохроматического рентге­новского излучения веществами с легкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение. Опыты показали, что разность длин волн рассеянного и падающего излучений  не зависит от длины волны λ падающего излучения и природы рассеивающего вещества, а определяется только углом рассея­ния :

=2c sin2/2, (14.9)

где c=h/mc=0,243 нм – комптоновская длина волны электрона.

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и γ-излучений) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, что излучение представляет собой поток фотонов, то эффект Комптона − это результат упругого столкновения рентгеновских фотонов со свободными электронами вещества (для легких атомов электроны слабо связаны с ядрами атомов, поэтому их можно считать свободными). В процессе этого столкновения фотон передает электрону часть энергии и импульса. При каждом столкновении выполняются законы сохранения энергии и импульса. Согласно этим законам

, (14.10)

Таким образом, увеличение длины волны излучения объясняется тем, что фотон при рассеянии передает электрону часть своей энергии. Используя соотношения (14.10) Комптон получил экспериментально наблюдаемую зависимость (14.9).

Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.

5 Единство волновых и корпускулярных свойств электромагнитного излучения

Мы рассмотрели ряд явлений, связанных с электромагнитным излучением. В явлениях интерференции, дифракции, поляризации электромагнитное излучение ведет себя как волна. С другой стороны, тепловое излучение, фотоэффект, эффект Комптона служат убедительным доказательством того, что электромагнитное излучение представляет собой поток фотонов. Давление света и преломление света одинаково хорошо объясняются как квантовой, так и волновой теориями. Таким образом, электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств – непрерывных (волны) и дискретных (фотоны), которые взаимно дополняют друг друга.

Корпускулярные свойства света – энергия Е и импульс p – связаны с его волновыми свойствами – частотой (длиной волны λ) соотношениями (14.7): Е=h, p=h/с= h/λ.

Свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности, характерным для фотонов. Свет обладает корпускулярными и волновыми свойствами одновременно и обнаруживает определенные закономерности в их проявлении. Волновые свойства света проявляются в закономерностях его распространения, а корпускулярные – в процессах его взаимодействия с веществом. Энергия и импульс фотона уменьшаются с увеличением длины волны (уменьшением частоты), поэтому длинноволновое излучение обнаруживает преимущественно волновые свойства. Наоборот, коротковолновое излучение, обладающее значительными энергией и импульсом фотонов, труднее обнаруживает волновые свойства и проявляет преимущественно свойства корпускулярные. Например, дифракция рентгеновских лучей наблюдается только на пространственных решетках – кристаллах, имеющих расстояние между атомами порядка 10-10 м.

Взаимосвязь между двойственными корпускулярно-волновыми свойствами электромагнитного излучения можно объяснить, используя статистический подход к рассмотрению оптических явлений. Дифракционная картина возникает вследствие различной вероятности попадания фотонов в различные точки экрана. Облученность любой точки экрана пропорциональна вероятности попадания в эту точку фотонов. С другой стороны, по волновой теории, облученность экрана пропорциональна квадрату амплитуды световой волны в той же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку.