
- •Курс лекций
- •Содержание
- •Введение
- •1 Механическое движение и его виды
- •1 Механическое движение и его виды
- •2 Кинематика поступательного движения
- •3 Кинематика вращательного движения
- •4 Связь между угловыми и линейными величинами
- •Контрольные вопросы
- •1 Динамические характеристики поступательного движения
- •2 Законы Ньютона
- •3 Динамические характеристики вращательного движения
- •Моменты инерции некоторых тел
- •4 Основной закон динамики вращательного движения
- •5 Аналогия формул поступательного и вращательного движений
- •Основные характеристики и формулы кинематики
- •Контрольные вопросы
- •1 Понятие симметрии. Теорема Нетер
- •2 Закон сохранения импульса
- •3 Момент импульса. Закон сохранения момента импульса
- •4 Работа, мощность, энергия
- •5 Закон сохранения энергии
- •Контрольные вопросы
- •1 Принципы относительности Галилея и Эйнштейна
- •2 Понятие о специальной теории относительности
- •3 Основной закон релятивисткой динамики материальной точки
- •4 Закон взаимосвязи массы и энергии
- •Контрольные вопросы
- •Молекулярно-кинетическая теория идеальных газов
- •1 Основные положения молекулярно – кинетической теории
- •2 Опытные законы идеального газа. Уравнение состояния
- •3 Основное уравнение молекулярно-кинетической теории идеальных газов
- •4 Распределение Максвелла
- •5 Барометрическая формула. Распределение Больцмана
- •Контрольные вопросы
- •Основы равновесной термодинамики
- •1 Внутренняя энергия тела и идеального газа
- •2 Работа газа при изменении его объема
- •3 Первое начало термодинамики
- •4 Второе начало термодинамики
- •5 Тепловые двигатели и их кпд
- •Контрольные вопросы
- •Элементы неравновесной термодинамики
- •1 Энтропия как мера беспорядка в системе. Статистический смысл второго начала термодинамики
- •2 Третье начало термодинамики
- •3 Изменение энтропии в открытых системах
- •4 Понятие о самоорганизации
- •5 Примеры самоорганизации в природе
- •Контрольные вопросы
- •Сформулируйте расширенный вариант второго закона термодинамики для открытых систем.
- •Электростатическое поле
- •2 Электростатическое поле и его характеристики
- •3 Теорема Гаусса для электростатического поля в вакууме
- •4 Циркуляция вектора напряженности электростатического поля
- •6 Энергия электростатического поля
- •Контрольные вопросы
- •1 Магнитное поле
- •2 Силы Ампера и Лоренца
- •3 Закон Био – Савара – Лапласа. Простейшие случаи расчета магнитных полей
- •4 Работа по перемещению проводника с током в магнитном поле
- •Контрольные вопросы
- •1 Явление электромагнитной индукции
- •Явления самоиндукции и взаимной индукции
- •3 Магнитное поле в веществе
- •4 Теорема о циркуляции для магнитного поля
- •5 Энергия магнитного поля
- •Контрольные вопросы
- •2 Ток смещения
- •3 Уравнение Максвелла для электромагнитного поля
- •Контрольные вопросы
- •1 Свободные гармонические колебания
- •1 Свободные гармонические колебания
- •2 Затухающие и вынужденные колебания
- •3 Волны
- •4 Электромагнитные волны
- •Контрольные вопросы
- •Волновые свойства электромагнитного излучения
- •1 Развитие представлений и природе света
- •2 Интерференция света и методы ее наблюдения
- •1 Метод Юнга
- •2 Зеркало Ллойда
- •3 Интерференция в тонких пленках
- •3 Дифракция электромагнитных волн
- •4 Поляризация света
- •Контрольные вопросы
- •Квантовые свойства электромагнитного излучения
- •1 Тепловое излучение. Гипотеза Планка
- •2 Фотоэффект и его применение
- •3 Давление света. Фотоны
- •4 Эффект Комптона
- •5 Единство волновых и корпускулярных свойств электромагнитного излучения
- •Контрольные вопросы
- •1 Гипотеза де Бройля. Корпускулярно волновой дуализм как универсальное свойство материи
- •2 Соотношение неопределенностей
- •3 Волновая функция и ее статистический смысл
- •4 Уравнение Шредингера и его решения для ряда простейших случаев
- •1 Движение свободной частицы
- •2 Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими стенками
- •Контрольные вопросы
- •1 Развитие представлений о строении атома
- •2 Атом водорода в квантовой механике
- •3 Многоэлектронные атомы
- •4 Атомное ядро
- •5 Радиоактивность. Радиоактивные излучения
- •Контрольные вопросы
- •Современная физическая картина мира
- •1 Агрегатные состояния вещества
- •2 Кристаллы и их симметрия. Дефекты в кристаллах
- •3 Понятие о зонной теории твердых тел
- •4 Проводимость твердых тел. Проводники, полупроводники и диэлектрики
- •Контрольные вопросы
- •2 Частицы и античастицы
- •3 Элементарные частицы и их классификация. Понятие о кварках
- •1 Основные типы физических взаимодействий в природе
- •2 Частицы и античастицы
- •3 Элементарные частицы и их классификация. Понятие о кварках
- •4 Современная физическая картина мира
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Перечень ключевых слов
5 Примеры самоорганизации в природе
В природе существует большое количество примеров образования упорядоченных структур. Перечислим наиболее известные из них.
Классическим примером возникновения упорядоченной структуры являются конвективные ячейки Бенара. Они наблюдаются в ртути, силиконовом масле или другой вязкой жидкости, налитой в широкий плоский сосуд. Сосуд подогревается снизу (сковорода на плите), в системе имеется вертикальный градиент температуры. При небольшом значении градиента температура наблюдается хаотическое движение слоев. При определенном критическом значении градиента температур слой ртути распадается на одинаковые шестигранные призмы с определенным соотношением между стороной и высотой. В центральной части такой призмы жидкость поднимается вверх, а по граням опускается. По поверхности жидкость растекается от центра к краям, а в придонном слое – к центру.
Температурный градиент в данном случае называют инверсным. Это связано с тем, что жидкость у нижней поверхности из-за теплового расширения имеет меньшую плотность, чем вблизи верхней. На каждый слой действуют сила тяжести и выталкивающая сила Архимеда, система оказывается неустойчивой, слои «хотят» поменяться местами. При небольшой разнице температур между поверхностями вязкой жидкости тепло распространяется лишь путем теплопроводности и движения жидкости не наблюдается. Возникающие флуктуации гасятся из-за вязкого трения. Начиная с некоторого градиента температур теплообмен ускоряется, флуктуации достигают макроскопических масштабов, возникают конвективные потоки. Для устойчивости потоков жидкости необходима регулировка подогрева, и она происходит самосогласованно. Возникает структура, обеспечивающая максимальную скорость тепловых потоков.
Замечательным примером возникновения самоорганизации являются химические часы (реакция Белоусова – Жаботинского). В растворе, состоящем из серной и малоновой кислот, сульфата церия и бромида калия с добавлением ферроина протекают окислительно – восстановительные реакции, за их ходом можно следить по изменению цвета раствора или по изменению спектрального поглощения. Когда все перечисленные вещества сливают в пробирку, то раствор начинает менять цвет с красного (что означает избыток ионов Се3+) на голубой (избыток ионов Се4+). Цвет изменяется периодически, период зависит от концентрации реагентов и четко сохраняется. Именно поэтому такие реакции называются химическими часами.
Начиная с некоторого соотношения концентраций реагентов, спонтанно возникают пространственные неоднородности концентраций и образуются устойчивые синие и красные слои, сохраняющиеся в пробирке до получаса.
Самоорганизация происходит и при генерации в атомной системе. В кристалле твердотельного лазера имеются активные, возбужденные накачкой от внешнего источника атомы, испускающие цуги волн. При малой мощности накачки световые цуги испускаются атомами независимо друг от друга, лазер работает как обычная лампа и испускает некогерентный свет. Начиная с некоторого порогового значения мощности накачки все атомы – антенны начинают работать самосогласованно, испуская цуги в одной фазе. Возникает гигантский цуг когерентного лазерного излучения, интенсивность излучения резко возрастает. Переход лазера в режим генерации аналогичен образованию ячеек Бенара.
Процессами самоорганизации в настоящее время объясняют образование планетарных волн давления (модель – вихри Тейлора), существование колец у тяжелых планет (Сатурна, Урана, Нептуна). Наиболее масштабным и впечатляющим примером самоорганизации является, очевидно, образование и эволюция крупномасштабных структур во Вселенной.
С самоорганизацией связаны также процессы перехода от ламинарного движения к турбулентному и формирование динамического хаоса.
В мире живого также наблюдается большое количество примеров самоорганизации, переход от менее упорядоченных структур к более упорядоченным структурам происходит по единому алгоритму. Самоорганизация проявляется при синтезе белков и других органических молекул, морфогенезе, эволюции живых организмов, в динамике популяций и т.д. Качественно новый этап развития биосферы – появление человека. Благодаря разуму человечество стало самоорганизующейся системой. Подробное рассмотрение этих примеров выходит за рамки курса. Мы рассмотрим только стохастическую модель морфогенеза.
Морфогенез – процесс образования тканей и органов в процессе эмбрионального развития организма. Как и в случае физических систем, в развитии зародыша последовательно возникают нарушения симметрии. Яйцеклетка имеет форму шара, после начала дифференциации клеток сферическая система переходит в цилиндрическую. Затем нарушается и цилиндрическая симметрия – брюшная полость отделяется от спиной, появляются разные типы тканей. Эти нарушения симметрии происходят скачками, спонтанно из-за неустойчивости симметричного состояния. После скачка, перестройки наступают плавные этапы развития эмбриона. Перед скачком возникают предвестники новой формы – распределение веществ вдоль тела становится нерегулярным, стохастичным. Зачем скачком возникает новая упорядоченная форма, а распределение веществ плавно меняется.
Таким образом, в ходе морфогенеза реализуется определенная последовательность бифуркаций, развитие проходит через фазы неустойчивостей.
Морфогенез как последовательность фазовых переходов изменения симметрий содержит информацию о предшествующих этапах эволюции. Модель морфогенеза положена в основу математической теории самоорганизации от первичного бульона до простейших живых систем. Это позволяет понять эволюцию живого в целом.