
- •Курс лекций
- •Содержание
- •Введение
- •1 Механическое движение и его виды
- •1 Механическое движение и его виды
- •2 Кинематика поступательного движения
- •3 Кинематика вращательного движения
- •4 Связь между угловыми и линейными величинами
- •Контрольные вопросы
- •1 Динамические характеристики поступательного движения
- •2 Законы Ньютона
- •3 Динамические характеристики вращательного движения
- •Моменты инерции некоторых тел
- •4 Основной закон динамики вращательного движения
- •5 Аналогия формул поступательного и вращательного движений
- •Основные характеристики и формулы кинематики
- •Контрольные вопросы
- •1 Понятие симметрии. Теорема Нетер
- •2 Закон сохранения импульса
- •3 Момент импульса. Закон сохранения момента импульса
- •4 Работа, мощность, энергия
- •5 Закон сохранения энергии
- •Контрольные вопросы
- •1 Принципы относительности Галилея и Эйнштейна
- •2 Понятие о специальной теории относительности
- •3 Основной закон релятивисткой динамики материальной точки
- •4 Закон взаимосвязи массы и энергии
- •Контрольные вопросы
- •Молекулярно-кинетическая теория идеальных газов
- •1 Основные положения молекулярно – кинетической теории
- •2 Опытные законы идеального газа. Уравнение состояния
- •3 Основное уравнение молекулярно-кинетической теории идеальных газов
- •4 Распределение Максвелла
- •5 Барометрическая формула. Распределение Больцмана
- •Контрольные вопросы
- •Основы равновесной термодинамики
- •1 Внутренняя энергия тела и идеального газа
- •2 Работа газа при изменении его объема
- •3 Первое начало термодинамики
- •4 Второе начало термодинамики
- •5 Тепловые двигатели и их кпд
- •Контрольные вопросы
- •Элементы неравновесной термодинамики
- •1 Энтропия как мера беспорядка в системе. Статистический смысл второго начала термодинамики
- •2 Третье начало термодинамики
- •3 Изменение энтропии в открытых системах
- •4 Понятие о самоорганизации
- •5 Примеры самоорганизации в природе
- •Контрольные вопросы
- •Сформулируйте расширенный вариант второго закона термодинамики для открытых систем.
- •Электростатическое поле
- •2 Электростатическое поле и его характеристики
- •3 Теорема Гаусса для электростатического поля в вакууме
- •4 Циркуляция вектора напряженности электростатического поля
- •6 Энергия электростатического поля
- •Контрольные вопросы
- •1 Магнитное поле
- •2 Силы Ампера и Лоренца
- •3 Закон Био – Савара – Лапласа. Простейшие случаи расчета магнитных полей
- •4 Работа по перемещению проводника с током в магнитном поле
- •Контрольные вопросы
- •1 Явление электромагнитной индукции
- •Явления самоиндукции и взаимной индукции
- •3 Магнитное поле в веществе
- •4 Теорема о циркуляции для магнитного поля
- •5 Энергия магнитного поля
- •Контрольные вопросы
- •2 Ток смещения
- •3 Уравнение Максвелла для электромагнитного поля
- •Контрольные вопросы
- •1 Свободные гармонические колебания
- •1 Свободные гармонические колебания
- •2 Затухающие и вынужденные колебания
- •3 Волны
- •4 Электромагнитные волны
- •Контрольные вопросы
- •Волновые свойства электромагнитного излучения
- •1 Развитие представлений и природе света
- •2 Интерференция света и методы ее наблюдения
- •1 Метод Юнга
- •2 Зеркало Ллойда
- •3 Интерференция в тонких пленках
- •3 Дифракция электромагнитных волн
- •4 Поляризация света
- •Контрольные вопросы
- •Квантовые свойства электромагнитного излучения
- •1 Тепловое излучение. Гипотеза Планка
- •2 Фотоэффект и его применение
- •3 Давление света. Фотоны
- •4 Эффект Комптона
- •5 Единство волновых и корпускулярных свойств электромагнитного излучения
- •Контрольные вопросы
- •1 Гипотеза де Бройля. Корпускулярно волновой дуализм как универсальное свойство материи
- •2 Соотношение неопределенностей
- •3 Волновая функция и ее статистический смысл
- •4 Уравнение Шредингера и его решения для ряда простейших случаев
- •1 Движение свободной частицы
- •2 Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими стенками
- •Контрольные вопросы
- •1 Развитие представлений о строении атома
- •2 Атом водорода в квантовой механике
- •3 Многоэлектронные атомы
- •4 Атомное ядро
- •5 Радиоактивность. Радиоактивные излучения
- •Контрольные вопросы
- •Современная физическая картина мира
- •1 Агрегатные состояния вещества
- •2 Кристаллы и их симметрия. Дефекты в кристаллах
- •3 Понятие о зонной теории твердых тел
- •4 Проводимость твердых тел. Проводники, полупроводники и диэлектрики
- •Контрольные вопросы
- •2 Частицы и античастицы
- •3 Элементарные частицы и их классификация. Понятие о кварках
- •1 Основные типы физических взаимодействий в природе
- •2 Частицы и античастицы
- •3 Элементарные частицы и их классификация. Понятие о кварках
- •4 Современная физическая картина мира
- •Контрольные вопросы
- •Заключение
- •Библиографический список
- •Перечень ключевых слов
5 Тепловые двигатели и их кпд
Исторически второе начало термодинамики было сформулировано при анализе экспериментальных данных о работе тепловых двигателей. Тепловым двигателем называется периодически действующая машина, совершающая работу за счет подведенного извне тепла. Французский инженер Н. Карно доказал, что для работы теплового двигателя необходимо не менее двух источников теплоты с разными температурами. Рассмотрим схему работы теплового двигателя (рисунок 8). От термостата с более высокой температурой T1 (нагревателя) за цикл отнимается количество теплоты Q1, а термостату с более низкой температурой T2 (холодильнику) за цикл передается количество теплоты Q2. Рабочее тело при этом совершает работу А=Q1–Q2.
Эффективность тепловых машин принято характеризовать коэффициентом полезного действия ή (КПД):
ή = А / Q1, = (Q1 – Q2) / Q1. (6.9)
Рисунок 8 – Схема работы теплового двигателя
Можно показать, что КПД всех обратимых тепловых машин, работающих в идентичных условиях (т.е. при одинаковых температурах нагревателя и холодильника) одинаков и определяется только температурами холодильника и нагревателя (теорема Карно). КПД необратимой машины всегда меньше, чем обратимой, работающей в тех же условиях.
Анализируя работу тепловых двигателей, Карно сумел доказать, что наиболее экономичным обратимым циклом является цикл, состоящий из двух изотермических и двух адиабатических процессов. Этот цикл в настоящее время носит имя Карно. Можно показать, что КПД этого цикла определяется температурами нагревателя T1 и холодильника T2:
.
(6.10)
Для повышения КПД необходимо увеличивать разность температур нагревателя и холодильника.
Обратный цикл Карно лежит в основе действия тепловых насосов. Тепловые насосы отдают тепловую энергию горячему телу (например, системе отопления). Часть этой энергии отбирается от окружающей среды с более низкой температурой, а часть получается за счет работы, производимой, например, компрессором.
Проблема вечного двигателя
Проблема источников энергии – одна из основных проблем, стоящих перед человечеством. Первые проекты вечного двигателя (перпетуум мобиле) относятся к 13 веку; широкое распространение идея вечного двигателя получила в 16 – 17 вв. Что же такое вечный двигатель?
Вечным двигателем первого рода называется воображаемое непрерывно действующее устройство, которое будучи раз пущено в ход, совершало бы работу бесконечно долгое время без получения энергии извне.
Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии U=0. В этом случае согласно первому началу термодинамики A=Q. Нельзя построить периодически действующий двигатель, который совершал бы большую работу, чем количество сообщенной ему извне энергии. Первое начало термодинамики можно сформулировать следующим образом: вечный двигатель первого рода невозможен.
Вечный двигатель второго рода – воображаемое устройство, периодически работающее с одним резервуаром тепла. Работа такой машины не противоречила бы закону сохранения энергии (т.е. первому началу термодинамики), однако второй закон термодинамики запрещает ее существование. Невозможен периодически действующий двигатель, который получал бы тепло от одного теплового резервуара и превращал это тепло полностью в работу. Двигатель второго рода, будь он возможен, был бы практически вечным, так как запас энергии в окружающей среде практически неисчерпаем. Так, охлаждение океанов на один кельвин дало бы примерно 1024 Дж теплоты, что эквивалентно 1014 т каменного угля. Железнодорожный состав, нагруженный этим углем, растянулся бы на расстояние 1010 км, что совпадает с размерами Солнечной системы.
Таким образом, существование вечного двигателя противоречит законам природы. Не случайно с 1775 г. Парижская академия наук отказалась рассматривать проекты перпетуум мобиле.