Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экзамен / Билеты по биологии

.pdf
Скачиваний:
86
Добавлен:
30.01.2020
Размер:
2.3 Mб
Скачать

11

Политенные хромосомы. Хромосомы видны только во время митоза, образуясь в профазе и существуя до телофазы, после чего они деконденсируются. Однако, в некоторых случаях хромосомы продолжают существовать и в интерфазе. Классическим примером таких хромосом служат гигантские, политенные хромосомы слюнных желез личинок насекомых (например, плодовой мушки Drosophila или комара Chironomus). Впервые такие гигантские хромосомы обнаружил итальянский ученый Бальбиани в 1881 году а интерфазных клетках слюнных желез личинки мотыля. В дальнейшем политенные хромосомы были обнаружены у двукрылых в клетках кишечника, мальпигиевых сосудах, в клетках зародышего мешка растений, в клетках некоторых злокачественных опухолей у млекопитающих. Политенные хромосомы образуются благодаря тому, что хроматиды, возникающие в ряде последовательных синтезов ДНК, не расходятся, а остаются вместе, тесно сближенными. Поэтому хромосомы увеличиваются до гигантских размеров, могут содержать 1000-2000 хроматид. Детальное изучение политенных хромосом показало, что в них можно различить поперечные полосы или диски, причем более темные, окрашиваемые основными красителями полосы (диски) чередуются с более светлыми междисковыми участками (междиски). Число и расположение дисков в каждой хромосоме соответствует локализации в ней определенных генов. Исследования, проведенные с помощью электронного микроскопа позволили составить детальную карту некоторых политенных хромосом дрозофилы и установить точное расположение на ней большого числа генов. Часть дисков соответствует одному гену, но встречаются такие, которые содержат несколько разных генов. Обнаружены гены, занимающие несколько дисков или междисков. Морфологически на хромосомах в разных местах наблюдаются вздутия, в которых имеется выраженное утолщение, содержащее повышенное количество РНК и негистоновых белков. Такие активные вздутия на политенных хромосомах насекомых названы кольцами Бальбиани. С помощью электронной микроскопии было показано, что в пуффах нити ДНП частично расплетены, и там идет синтез РНК. В процессе развития можно наблюдать, что одни пуффы исчезают и появляются другие в определенной последовательности, то есть идет постепенное включение и выключение генов, обуславливающих синтез белков, необходимых на данном этапе развития. Особые хромосомы представляют собой так называемые хромосомы типа ламповых щеток. Они обнаруживаются в профазе редукционного деления, главным образом на стадии диплотены, особенно в ооцитах животных. В «ламповых щетках» нити хроматина образуют большие петлеобразные выросты, направленные в разные стороны. Они наблюдаются даже в световом микроскопе и похожи на щетки для чистки стёкол керосиновых ламп («ершей»). Наэтих выростах происходит интенсивный синтез РНК то есть они являются местами активной транскрипции. В них расположены участки, лишенные видимых нуклеосом, и они обладают характерными свойствами активного хроматина. До недавного времени считалось, что «лимповые щитки» встречаются только у животных, однако их удалось обнаружить также в ядре (ризоиде) гигантской одноклеточной водоросли ацетобулярии.

12

Кариотип. Идиограмма. В 1924 году Г.А.Левитский применил термин «кариотип» для обозначения ядерных - особенностей организма. Кариотип - диплоидный набор хромосом, соматической клетки (2п), характеризующийся их числом, размером и формой; является

видоспецифическим признаком (генетический критерий).Нормальный кариотип женщины - 46, XX; нормальный кариотип мужчины - 46, ХУ. Термин «идиограмма» был предложен С.Г.Навашиным, а уточнен Левитским в 30-е годы XX века. Идиограмма (от греч.: idios - своеобразный, gramme - запись) - графическое изображение хромосом, присущих соматической клетке данного вида, со всеми их структурными характеристиками (положение центромеры и спутников, расположение хромомер и гетерохроматина). Денверская классификация хромосом человека. В 1960 году на конгрессе генетиков в г.Денвере (США) была принята первая классификация хромосом человека, которая помогла анализировать кариотипы людей. В основу классификации хромосом были положены морфологические характеристики: размеры, форма, положение центромеры. Все аутосомы получили порядковые номера и были подразделены на 7 групп в порядке убывания размеров: А. В. С. Р. Е, F, G. Половые хромосомы в отдельную группу не выделялись, но по принципу морфологического подобия X-хромосома не отличима от хромосом группы С, а Y-хромосома - от группы G. А (1,3 пары - большие метацентрические, а 2 пара - большие субметацентрические),В (4,5) - большие субметацентрические,С (6-12) - средние субметацентрические,D (13-15) - средние акроцентрические,Е (16-18) - малые субметацентрические,F (19.20) - малые метацентрические,G (21,22) - малые акроцентрические. Примечание: в практической работе приводится схема, которая поможет более успешному усвоению материала по характеристике хромосом человека. Принятие Денверской классификации способствовало наведению определенного порядка в кариотипе человека. Но так как хромосомы внутри группы окрашивались однотипно и практически не различались между собой, это затрудняло их идентификацию, не позволяло отличить половые хромосомы от аутосом и проводить точную диагностику при хромосомных аномалиях. Недостатки Денверской классификации были устранены на IV Международной конференции по стандартизации и цитогенетике человека в Париже (1971). Парижская классификация хромосом человека. Возможности точной идентификации каждой хромосомы появились только в 1968-1970 гг.. когда 3 группы ученых: Т.Касперсон с сотр. (Швеция), Б.Датрилпэукс и Ж.Лежен (Франция), А.Ф.Захаров и Н.А.Еголина (СССР) предложили 4 основных метода дифференциального окрашивания хромосом человека: G (Гимза), Q (акрихин), R (revers - обратный) и С (конститутивный гетерохроматин) и метод дифференциального окрашивания хроматид с помощью брсмдезоксиуридина (БУДР), являющегося аналогом тимина. Эти методы позволяют идентифицировать различные типы сегментов (блоки) хромосом, а метод дифференциального окрашивания хроматид выявляет сестринские хроматидные обмены (СХО). Методы дифференциальной окраски хромосом основаны на действии солевых растворов со строго заданным pH и определены температурным режимом с последующей обработкой основными красителями или флюорохромами (акрихин, акрихин-иприт), а метод дифференциальной окраски хроматид основан на способности участка хромосомы, включившего БУДР, изменять состояние своей конденсации и окраски. В 1971 году в г. Париже на IV Международной конференции по стандартизации и цитогенетики человека была принята новая классификация хромосом человека. Выявляемое при дифференциальном окрашивании хромосом чередование сегментов (темные и светлые полосы) характеризовалось постоянством, что позволило цитогенетикам идентифицировать каждую хромосому и создать идиограмму хромосом человека.Парижская классификация хромосом человека предназначена для описания по единой форме линейной структуры каждой хромосомы. Причем сохранялась Денверская нумерация хромосом. Каждая хромосома стала

рассматриваться как непрерывная совокупность сегментов, независимо от их окраски; межсегментов не существует.Плечи хромосом стали обозначаться латинскими буквами: р- короткое и q-длинное. Плечи разделены на районы, границами которых служат регулярно наблюдаемые четкие морфологические маркеры, а районы, в свою очередь, подразделяются на сегменты, которые четко отличаются от соседних по интенсивности окраски. Районы и сегменты нумеруются арабскими цифрами от центромеры к теломере, отдельно для каждого плеча. Например, запись 5 р 14 означает: 5 хромосома, короткое плечо, район 1, сегмент 4.Молекулярко-генетическую организацию сегментов хромосом можно объяснить с помощью следующей гипотезы. Известно, что различные участки хромосом человека отличаются по количественному содержанию AT- и ГЦ-пар оснований; Q-сегменты (или совпадающие с ними G-сегменты) соответствуют участкам, богатым АТ-парами (55-65% ДНК), и содержат тканеспецифичные гены, реплицирующиеся во второй половине фазы синтеза ДНК (S- период); R-сегменты соответствуют участкам богатым ГЦ-парам (50-60% ДНК), и содержат общеклеточные гены, которые реплицируются в первой половине S-периода.Таким образом, дифференциальное окрашивание метафазных хромосом является выражением их структурнофункциональной дифференцированности. В начале 80-х годов большое распространение получили более совершенные методы дифференциального окрашивания хромосом, позволяющие анализировать хромосомы на стадиях прометафазы и даже профазы.

13

Строение гена. Классификация генов. Фундаментальным понятием в генетике является представление о гене как единице наследственности. Ниже приводится два определения гена. Ген - это участок ДНК, коллинеарно кодирующий определённый белковый или нуклеиновый продукт. Ген - это фрагмент 2-цепочечной ДНК, несущей определённую генетическую информацию. У кишечной палочки имеется 4 тыс. генов, у дрожжей - 7 тыс. генов, а у дрозофилы и плоских червей -15-20 тысяч генов,У человека имеется приблизительно от 50 тысяч до 100 тысяч структурных генов, по данным на 1989 год около 5 тысяч генов были приблизительно охарактеризованы, а около 2 тысяч генов были нанесены на карты хромосом (картированы). 26 июня 2000 года в прессе было сделано сообщение о том, что учеными США, Англии, Японии и других стран, участвующими в программе «Геном человека», завершена основная часть работы (более 90%) по расшифровке генетического кода человека. В ближайшие 2 года планируется уточнить и завершить работу по данной программе, которая имеет важное прикладное значение для медицины. В плане данной темы важно помнить, что ген занимает определённый участок (локус) в хромосоме, это участок ДНК, который может быть представлен десятками, сотнями или тысячами пар нуклеотидов. В настоящее время, с функционально-генетической точки зрения, гены классифицируют на 3 группы:1. Структурные гены - кодируют структуру синтезируемых клеткой белков (структурных белков, белков-ферментов и др.), а также кодируют последовательности нуклеотидов в молекулах т- РНК и р-РНК. 2. Регуляторные (функциональные) гены - контролируют и направляют работу структурных генов. 3. Гены-модуляторы. К ним относятся гены-ингибиторы (или супрессоры), которые подавляют функции других генов, гены-интенсификаторы, которые усиливают функции других генов и др. Экзонно-интронная структура генов.В 70-х годах XX века было обнаружено, что структурные гены эукариот содержат экзоны (участки ДНК, несущие генетическую информацию и отвечающие за синтез определенных участков белков)

и интроны (участки ДНК, которые не несут генетической информации, относящейся к синтезу белка, кодируемого данным геном). Интроны ещё называют вставками, расположенными между экзонами. Таким образом, принципиальным отличием генов эукариот от генов прокариот является то, что их структурные гены имеют разорванную, прерывистую структуру. Однако исключение составляют гены, кодирующие гистоны и интерфероны, они не содержат интронов. Дальнейшие исследования показали, что большинство генов эукариот имеют экзон-интронную организацию. Длина интронов варьирует в очень широких пределах: от 100 до 10000 нуклеотидов и более, нередко их суммарная длина больше длины экзонов. Количество интронов и экзонов в разных генах варьирует. Один из самых коротких - ген бета-глобина, состоящий из 1100 пар нуклеотидов (пн), содержит 3 экзона (90, 222, 126 пн) и 2 интрона (116, 646 пн). Примером протяженного гена служит ген дистрофина, имеющий 2,6 млн пн и более 2000 экзонов.

Представление, что интроны - нефункциональная часть гена, - неверно. И хотя детально их биологическая роль не выяснена, существует ряд гипотез о значении интронов: 1) Строение генов из участков выгодно для процессов генетической рекомбинации, перетасовки генов. Чем дальше в хромосоме расположены фрагменты генетического материала, тем выше вероятность рекомбинации. Именно поэтому и выгодны вставки-интроны. Нуклеотидная последовательность интронов менее консервативна, чем у экзонов, она подвергается быстрым изменениям в эволюции.

Перетасовка частей генов может быть использована для разных целей: а) это путь к образованию новых генов; б) это способ нейтрализации вредных мутаций. 2) Предполагается регуляторная роль интронов в экспрессии (работе) генов. Интроны могут содержать энхансеры. Они могут кодировать особый фермент, который участвует в сплайсинге м-РНК (смотри следующий вопрос). Заканчивая разговор о гене, необходимо отметить ещё одно обстоятельство. У эукариот гены разделены между собой протяженными участками ДНК, которые были названы спейсерами, или разделителями. Накапливается всё более данных, что именно в спейсерах располагаются те сегменты ДНК, которым принадлежит решающая роль в регуляции работы генов (в регуляции транскрипции).

Регуляиия биосинтеза белка у прокариот (на примере работы лактозного оперона кишечной папочки).Все клетки любого организма имеют полный набор свойственных данному организму генов. Вместе с тем известно, что клетки разных тканей и органов отличаются по набору имеющихся в них белков. Располагая полной генетической информацией, каждая клетка на определенном этапе развития использует лишь ту её часть, которая необходима в настоящий момент, транскрибируются («работают») только те гены, продукты которых нужны клетке в данный момент для выполнения её функций. Следовательно, клетка должна обладать механизмами, определяющими какие гены и в какой последовательности должны транскрибироваться. Наиболее полно регуляция генной активности изучена на примерах синтеза белков-ферментов у микроорганизмов. Теория регуляции биосинтеза белка у прокариот разработана в 50-х годах XX века французскими учеными Ф.Жакобом и Ж.Моно. Они разработали концепцию опреона и выяснили основные принципы регуляции биосинтеза белка у прокариот. Согласно теории Ф.Жакоба и Ж.Моно, гены функционально неодинаковы : выделяют группу структурных генов (они кодируют структуру синтезируемых клеткой попипептидов, белков, р-РНК, т-РНК) и группу регуляторных генов (они управляют работой структурных генов обычно с помощью присоединения к ним различных белковых факторов).

Единицей генетической регуляции является оперон, который представляет собой совокупность расположенных е линейной последовательности регуляторных и одного или нескольких структурных генов. Гены одного оперона расположены в хромосоме прокариот рядом и кодируют ферменты, осуществляющие последовательные реакции синтеза или расщепления. Эти гены находятся под общим регуляторным контролем и могут включаться и выключаться координированно. Одним из наиболее наглядных и хорошо изученных примеров является лактозный оперон кишечной палочки (Escherichia coli) -- группа генов, контролирующая синтез ферментов, осуществляющих катаболизм молочного сахара - лактозы. Буквально через несколько минут после добавления в питательную среду для кишечной палочки лактозы, бактерии начинают вырабатывать 3 фермента: галактозидпермеазу, бетагалактозидазу и галактоэидтрансацетилазу. Как только ресурсы лактозы в среде исчерпываются, синтез ферментов сразу же прекращается. Строение лактозного оперона кишечной палочки : 1. Начинается оперон с участка А - он предназначен для присоединения белка-активатора (синий круглешок), в свою очередь необходимого для присоединения к следующему участку фермента (РНК-полимеразы). 2. Следующий участок П (промотор) - место прикрепления фермента РНК-полимеразы (зеленый треугольник), это участок начала транскрипции. 3. За промотором следует О (оператор) - он играет важную роль в транскрипции генов оперона, т.к. с ним может прикрепляться регуляторный белокрепрессор(красн 2 треугольника) 4. За оператором следуют структурные гены (z, у, а), которые кодируют построение 3-х упомянутых ранее белков-ферментов.5. Заканчивается оперон Т (терминатором) - участком, прекращающим продвижение РНК-полимеразы и транскрипции оперона.

6. Основная регуляция работы структурных генов осуществляется регуляторным белком(красн 2 треугольн) который кодируется Р (геном-регулятором), который не входит в состав оперона, а лежит поблизости в другом месте хромосомы. Работа лактозного оперона Регуляторный белок-репрессор в незначительном количестве синтезируется в клетке постоянно. Этот белок обладает сродством к последовательности нуклеотидов в области оператора, а также сродством к лактозе.Репрессия : В отсутствие лактозы регуляторный белок связывается с участком-оператором (О) и препятствует продвижению по ДНК РНКполимеразы: не синтезируется м-РНК, не синтезируются и белки-ферменты. Индукция: После добавления в среду лактозы, регуляторный белок связывается с ней быстрее, чем с участком-оператором, который остаётся свободным и не препятствует продвижению РНКполимеразы. Идёт транскрипция и трансляция. Синтезирующие белки-ферменты расщепляют лактозу. После того, как вся лактоза будет израсходована, нечем будет связывать регуляторный белок и он снова окажется с О (оператором), прекратив транскрипцию оперона. Другой известный тип индукции - позитивная индукция. Она свойственна другому оперону кишечной палочки, кодирующему ферменты катаболизма другого сахара -арабинозы. Этот оперон структурно очень похож на предыдущий. Разница в регуляции состоит в том, что добавленная в среду арабиноза взаимодействует с белком-репрессороми, освобождая операторный участок, одновременно превращает белок-репрессор в белок-активатор, способствующий. присоединению РНК-полимеразы к промотору. В этих условиях транскрипции имеет место. Как только запасы арабинозы в среде исчерпываются, синтезирующийся белок-репрессор опять связывается с оператором, выключая транскрипцию. Кроме индукции, известны также 2 типа (негативный и позитивный) регуляции по принципу репрессии. Если при негативной индукции эффектор (индуктор)

препятствует присоединению белка-репрессора к оператору, то при негативной репрессии, наоборот, эффектор придаёт регуляторному белку способность присоединяться к оператору. Если в первом случае соединение эффектора с белком-регулятором разрешало транскрипцию, то во втором оно запрещает её. Примером негативной репрессии может служить хорошо изученный триптофановый оперон кишечной палочки. В его состав входят пять структурных генов, обеспечивающих синтез аминокислоты триптофана, оператор и два промотора. Белокрегулятор синтезируется вне триптофонового оперона. Пока клетка успевает расходовать весь синтезирующийся триптофан, оперон работает, синтез триптофана продолжается. Если же в клетке появляется избыток триптофана, он соединяется с регуляторным белком и изменяет его таким образом, что этот белок приобретает сродство с оператором. Измененный белокрегулятор взаимодействует с оператором и препятствует транскрипции структурных генов вследствии чего синтез триптофана прекращается. При позитивной репрессии эффектор лишает регуляторный белок способности связываться с оператором, обуславливая таким образом, транскрипцию структуоных генов. Описанные типы регуляции характеризуют механизмы регуляции отдельных оперонов, практически не касаясь регуляции экспрессии генома в целом, в то время как совершенно очевидно, что регуляция разных оперонов должна носить согласованный характер. Такой согласованный характер работы разных оперонов и генов получил у вирусов и фагов название каскадной регуляции. Согласно принципу каскадной регуляции, сначала происходит транскрипция «предранних», затем «ранних» и наконец «поздних» генов, в зависимости от того, какие белки требуются на разных стадиях вирусной (фаговой) инфекции. Конечно, принцип каскадной регуляции у фагов относится к наиболее простым. У более сложно организованных организмов для осуществления большого количества функций, происходящих одновременно или с определённой последовательностью, необходима согласованная работа многих генов и оперонов, Особенно это касается эукариотов, отличающихся не только более сложной организацией генома, но и многими другими особенностями механизмов регуляции генной активности. По принципам регуляции гены эукариотов можно условно разделить на 3 группы : 1) функционирующие во всех клетках организма; 2) функционирующие в тканях только одного типа; 3) обеспечивающие выполнение специализированными клетками конкретных функций. Кроме того, у эукариотов известно одновременное групповое выключение генной активности, осуществляемое гистонами - основными белками, входящими в состав хромосом. Ещё одним существенным отличием транскрипции у эукариотов является то, что многие м-РНК длительное время сохраняются в клетке в виде особых частиц -информосом, в то время как м- РНК прокариотов практически ещё в процессе транскрипции поступают в рибосомы, транслируются, после чего быстро разрушаются.

Вместе с тем, имеется много данных, указывающих, что транскрипция у эукариотов осуществляется с участков, подобных оперонам прокариотов и состоящих из регуляторных и структурных генов. Отличительной особенностью оперонов эукариотов является то, что почти всегда они содержат только структурный ген, а гены, контролирующие различные этапы определённой цепи метаболических превращений! разбросаны по хромосоме и даже по разным хромосомам. Другой отличительной чертой оперонов эукариотов является то, что они состоят из значащих (экзонов) и незначащих (интронов) участов. чередующихся друг с другом. При транскрипции считываются как экзоны, так и интроны, а образующийся при этом предшественник информационной РНК (про-мРНК) затем претерпевает созревание (процессинг), в результате которого происходит вырезание интронов и образование

собственно м-РНК (сплайсинг). У эукариотов известны и другие типы регуляции активности генов, такие как эффект положения или дозовая компенсация. В первом случае речь идёт об изменении генной активности е зависимости от конкретного окружения: перемещение гена из одного места хромосомы в другое может приводить к изменению активности как этого гена, так и близлежащих. Во втором случае, нехватка одной дозы какого-либо гена (в первую очередь это относится к генам, локализованным в половых хромосомах гетерогаметного пола, когда одна из гомологичных половых хромосом либо генетически инертна, либо полностью отсутствует) фенотипически не проявляется за счет компенсаторного увеличения активности оставшегося гена, В целом же, регуляция активности генов у эукариотов изучена недостаточно.

14

«Центральная догма (основной постулат) молекулярной биологии».

Представление о том, что генетическая информация хранится в ДНК и, таким образом, предаётся от клетки к клетке и из поколения в поколение, что она реализуется благодаря транскрипции в РНК и следующей за ней трансляцией, определяющей синтез белка, известно как «центральная догма молекулярной биологии».

Её выражает следующая схема ДНК -(репликация)-> ДНК -(транскрипция)-> РНК -(трансляция)-> Белок

Исследования последних лет показали, что «центральная догма" должна быть дополнена и несколько изменена.

В1972 г. Г.Тёмин и Д.Балтимор (США) открыли обратную транскриптазу, или ревертазу, - фермент, который осуществляет синтез ДНК' по матрице РНК. Его выделили сначала из очищенных ретровирусов, а затем обнаружил и в клетках различных организмов от бактерий до млекопитающих и человека.

Вэтом случае ревертаза осуществляет синтез цепи ДНК комплементарной м-РНК, а затем достраивает вторую цепь либо с помощью той же ревертазы, либо с помощью ДНКполимеразы. Полная ДНК-копия с м-РНК содержит всю информацию для синтеза белка, т.е. соответствует структурной части того или иного гена.

Таким образом, оказалось, что генетическая информация может передаваться не только от ДНК к РНК, но и в обратном направлении от РНК к ДНК.

Таким образом, «центральную догму» можно схематично изобразить так: ДНК <-> ДНК <-> РНК -> Белок.

Биологическое значение обратной транскрипции заключается з увеличении числа одинаковых генов, благодаря чему возрастает количество РНК и рибосом и повышается образование белка. Это особенно важно в развивающихся организмах.

Генетический код и его свойства.

Генетический код - единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Генетический код основан на использовании алфавита, состоящего всего, из 4 букв-нуклеотидов, отличающихся азотистыми основаниями.

1953 год обычно считают годом рождения молекулярной биологии. В это время американец Джеймс Уотсон и англичанин Френсис Крик в Кембридже расшифровали структуру ДНК - двойную спираль. Их работа базировалась на данных М.Уилкинса и Р.Франклина

(Великобритания) по рентгеноструктурному анализу ДНК и на данных Э.Чаргаффа (США) о нуклеотидном составе ДНК.

Попытки расшифровки генетического кода были предприняты в 1954 году Г.Гамовым. Основные свойства кода «триплетность» и «вырожденность» выявили в 1961 году Ф.Крик и С.Бреннер. В 1961 году впервые дешифровали первую триплетную последовательность - это сделали ученые М.Ниренеберг и Г.Маттеи. К 1965 году был расшифрован полностью весь генетический код. В настоящее время определение нуклеотидных последовательностей ДНК и РНК проводится с помощью специального метода - секвенирования, в котором используются ферменты рестриктазы.

Принцип кодирования генетической информации заключается в том, что порядок расположения аминокислот в белке закодирован в порядке расположения кодонов (триплетов нуклеотидов) в ДНК гена, т.е. структура гена и структура кодируемого им белка коллинеарны.

Свойства генетического кода:

1.Код является триплетным. Триплет - последовательность трех нуклеотидов, кодирующая одну аминокислоту.

2.Код является непрерывным. Каждый триплет соседствует со следующим без промежутков.

3.Код является неперекрывающимся. Процесс считывания генетической информации не допускает возможности перекрывания кодонов.

4.Код является вырожденным (избыточным), т.е. одна аминокислота может кодироваться различными триплетами нуклеотидов (исключение составляют метионин и триптофан, которые кодируются только одним триплетом). Аминокислот - 20. Различных триплетов нуклеотидов - 43=64.Три триплета УАА, УАГ, УГА - это стоп-сигналы(терминирующие кодоны), прекращающие синтез белка.

Триплет, соответствующий метионину (АУГ), выполняет функцию инициирования (возбуждения) считывания и не кодирует аминокислоту, если стоит в начале цепи ДНК.

5.Код является коллинеарным. Очерёдность триплетов нуклеотидов ДНК соответствует очерёдности аминокислот в белке.

6.Код является универсальным, т.к. он одинаков для всех живых организмов.

15

Основные этапы биосинтеза белка в клетке.

Синтез белков является одним из наиболее важных и характерных свойств любой живой клетки.

Способность к синтезу белков передается по наследству от клетки к клетке и сохраняется ею в течение всей жизни.

Биосинтез белка - один из центральных процессов метаболизма клетки, который связан с потоком вещества, энергии и информации.

Для осуществления биосинтеза белка необходим ряд условий, среди которых выделим, главные:

1.место синтеза - рибосомы;

2.материал, из которого строятся белки, - аминокислоты;

3.информация - она содержится в участке ДНК - гене, а передаётся синтезируемому белку через РНК (ДНК-► РНК-► Белок);

4.необходимым условием является энергия (в виде АТФ), т.к. синтез белка -процесс эндотермический;

5.важную роль в процессе биосинтеза белка играют ферменты, которые позволяют ему идти быстрее, четко, в определённой последовательности (ферменты: РНК-полимераза. белоксинтетаза и др.).

Рассмотрим процесс синтеза белка на примере эукариотической клетки. Можно выделить 3 основных этапа в этом процессе:

1.Транскрипция.

2.Посттранскрипционные превращения.

3.Трансляция.

Остановимся на этих этапах более подробно.

Транскрипция - первый этап реализации генетической информации, передача (переписывание) её с ДНК-матрицы на образующуюся РНК. Осуществляется в ядре клетки на смысловой нити ДНК, находящейся в деспирилизованном состоянии. Транскрипция идет в 3 стадии: инициация, элонгация и терминация.

Инициация. Для инициации необходимо наличие специального участка в ДНК, называемого промотором. Когда РНК-полимераза связывается с промотором, происходит локальное расплетание молекулы ДНК и образуется открытый промоторный участок.

Элонгация (удлинение) цепи РНК - это стадия транскрипции, которая наступает после присоединения 8 рибонуклеотидов. При этом движущаяся РНК-полимераза вдоль цепи ДНК действует подобно застежке молнии, раскрывая двойную спираль, которая замыкается позади фермента по мере того, как соответствующие основания РНК спариваются с основаниями ДНК.

Терминзция (прекращение роста) цепи мРНК происходит на специфических участках ДНК, называемых терминаторами.

Особенностью транскрипции у эукариот является то , что информация переписывается с промотора, оператора, с экзонов и интронов структурного гена и в результате образуется про- м-РНК, которую называют незрелой м-РНК. Она в среднем в 5 раз длиннее зрелой м-РНК. Вторым этапом биосинтеза белка, который также происходит в ядре клетки, являются посттранскрипционные изменения структуры про-мРНК. Всю совокупность реакций, в результате которых из незрелой про-мРНК формируется зрелая м-РНК, называют

процессингом. Он включает удаление начальных участков про-мРНК (соответствующих промотору и оператору), удаление участков, переписанных с интронов, а также сплайсинг (сшивание) участков, переписанных с экзонов. Зрелая м-РНК, соединяясь в ядре со специфическими белками, образует информоферы. Предполагают, что они способствуют отделению м-РНК от ДНК-матрицы и транспортировке её к ядерной мембране. Вышедшая из ядра м-РНК образует информосомы, вступая в комплекс со специфическими белками, играющими роль в процессе трансляции. Информосомы могут долго существовать в цитоплазме, например, при созревании яйцеклетки.

Следующим этапом биосинтеза белка, который идёт в цитоплазме клетки, является трансляция.

Трансляция - это перевод генетической информации с нуклеотидного кода, записанного в молекулах м-РНК, в определённую последовательность аминокислот в полипептидной

цепи синтезируемого белка.

В процессе трансляции активно участвуют м-РНК, рибосомы, т-РНК с различными аминокислотами, ферменты (аминоацил-тРНК-синтетазы, белок-синтетазы и др.), используется энергия АТФ.

Зрелые молекулы мРНК, попавшие в цитоплазму, прикрепляются к рибосомам, а затем протягиваются через них.

Функционирующие рибосомы состоят из 2-х субъединиц, большой и малой, построенных из р-РНК и различных белков, около 50% занимает вода. В каждцй момент внутри рибосомы находится небольшой участок м-РНК - обычно это 2 кодона или 2 триплета нуклеотидов. Кодон - единица наследственной информации, состоящая их трёх расположенных в определённой последовательности нуклеотидов РНК и кодирующая одну аминокислоту. Т.к. имеется 4 типа нуклеотидов, то существует 64 различных триплетных кодона (43 = 64). Аминокислоты доставляются в рибосомы различными т-РНК, которых в клетке несколько десятков. Молекулы т-РНК имеют два активных центра. К одному из них с участием АТФ и с помощью ферментов происходит присоединение аминокислоты, при этом образуется комплекс аминоацил-тРНК, а аминокислоты при этом активируются. Процесс узнавания аминокислот транспортными РНК получил название рекогниции. Второй активный центр в аминоацил-тРНК называется антикодоном - это участок молекулы т-РНК. состоящий из трёх нуклеотидов и «узнающий» комплиментарный ему участок из трёх нуклеотидов (кодон) в молекуле м-РНК. Взаимодействие кодона м-РНК и антикодона т-РНК обеспечивает определенное расположение аминокислот в синтезирующейся на рибосомах полипептидной цепи. Рибосома движется относительно м-РНК только в одном направлении (от 5' -> 3') , перемещаясь на один триплет.

Синтез белковой молекулы происходит в большой субъединице, где против одного триплета расположен эминоацильный центр (служит для удержания только что прибывшей молекулы т-РНК с аминокислотой), а против другого - пептидильный центр (фиксируют молекулу т- РНК, присоединённую к растущему концу полипептидной цепи). Образование пептидных связей между аминокислотами происходит в большой субъединице рибосомы, где работает фермент лептидилтрансферраза или белок-синтетаза.

Молекула м-РНК может работать сразу с несколькими рибосомами, все они синтезируют один и тот же белок.

Группа рибосом, одновременно находящихся на одной м-РНК, называется полирибосомой (полисомой).

Рибосома, как место синтеза, может участвовать в синтезе любого белка, характер же белка зависит от м-РНК. Каждая м-РНК транслируется, как правило, несколько раз, после чего разрушается. Среднее время жизни молекулы м-РНК около 2-х минут. Разрушая старые и образуя новые м-РНК, клетка может регулировать тип продуцируемых белков и их количество.

Трансляция включает следующие стадии :

1)инициация - начало синтеза;

2)элонгация - удлинение, наращивание полипептидной цепи;

3)терминация - окончание синтеза.

Синтез белка заканчивается, когда рибосома доходит до терминирующего кодона (бессмысленного). Это кодоны : УАГ, УАА, УГА, они не кодируют никаких аминокислот и являются знаками прекращения синтеза полипептидной цепи на м-РНК. По окончании синтеза белка, рибосома распадается на малую и большую субъединицы. Синтезированная

Соседние файлы в папке Экзамен