
- •Илья Хрисанфович Абрикосов Игорь Соломонович Гутман
- •193144, Г. Ленинград, ул. Моисеенко, 10.
- •Введение
- •Раздел 1 общая геология
- •Глава I земля и вселенная § 1. Солнечная система
- •§ 2. Галактика
- •§ 3. Строение Вселенной
- •§ 4. Методы изучения Вселенной
- •§ 5. Гипотеза образования планет Солнечной системы
- •Глава II общая характеристика земли § 1. Форма и размеры Земли
- •§ 2. Понятие о массе и плотности Земли
- •§ 3. Магнетизм Земли
- •§ 4. Теплота Земли
- •Глава III строение земли
- •§ 1. Внешние оболочки Земли
- •§ 2. Внутренние оболочки и ядро Земли
- •Глава IV
- •§ 2. Экзогенные процессы
- •§ 3. Диагенез осадков
- •§ 4. Эндогенные геологические процессы
- •Глава V минералы земной коры
- •§ 1, Понятие о минералах
- •§ 2. Физические свойства минералов
- •§ 3. Классификация минералов по химическому составу
- •§ 4. Породообразующие минералы
- •Глава VI горные породы § 1. Понятие о горных породах
- •§ 2. Магматические породы
- •§ 3. Осадочные породы
- •§ 4. Метаморфические породы
- •Глава VII
- •§ 2. Методы исторической геологии
- •§ 3. Зарождение жизни на Земле
- •§ 4. Относительная геохронология
- •Геохронологическая шкала
- •§ 5. Методы определения- абсолютного возраста Земли
- •§ 6, Развитие органического мира
- •§ 7. Тектонические движения в докембрии, палеозое, мезозое и кайнозое
- •Раздел II основы геологии нефти и газа
- •Глава I
- •§ 2. Природный углеводородный газ '
- •4 Абрикосов и. X. И др. 97
- •Пример расчета псевдокритических давлений и температур
- •§ 3. Воды нефтяных и газовых месторождений
- •Классификация вод, по Сулину
- •§ 4. Происхождение нефти и газа
- •Глава II
- •§ 1. Понятие о породах-коллекторах
- •§ 2. Пористость пород
- •§ 3. Проницаемость пород
- •§ 4. Зависимость пористости и проницаемости от давления и температуры
- •§ 5. Нефтегазонасыщенность пород-коллекторов
- •§ 6. Понятие о покрышках
- •§ 7. Понятие о природных резервуарах и ловушках
- •§ 8. Понятие о залежах и месторождениях нефти и газа
- •§ 9. Типы залежей нефти и газа
- •§ 10. Миграция, аккумуляция нефти и газа и разрушение их залежей
- •Глава III нефтегазоносные провинции
- •§ 1. Понятие о нефтегазоносных провинциях, областях, районах
- •§ 2. Основные нефтегазоносные провинции ссср
- •5 Абрикосов и. X. И др.
- •Ставропольская газоносная область
- •Среднеобская нефтегазоносная область
- •§ 3. Основные
- •6 Абрикосов и. X. И др. 161
- •Раздел III
- •Глава I методы поисково-разведочных работ
- •§ 1. Методы геологических исследований
- •§ 2. Методы геофизических исследований
- •Гравиметрическая разведка
- •§ 3. Радиометрические исследования
- •§ 4. Геохимические методы
- •§ 5. Глубокое бурение
- •Глава II этапы и стадии поисково-разведочных работ
- •§ 1. Региональные работы
- •§ 2. Стадия подготовки площадей (структур) к глубокому поисковому бурению
- •§ 3. Поисковое бурение
- •§ 4. Разведочное бурение на месторождениях нефти
- •§ 5. Особенности разведки газовых и газоконденсатных месторождений
- •§ 6. Доразведка нефтяных и газовых месторождений в процессе их разработки
- •§ 7. Промышленная оценка открытых месторождений нефти и газа
- •§ 8. Оценка эффективности геологоразведочных работ на нефть и газ
- •Раздел IV нефтегазопромысловая геология
- •Глава I
- •§ 2. Рациональный комплекс геофизических исследований для различных категорий скважин
- •7 Абрикосов и. X. И др. 193
- •§ 3. Геохимические методы изучения разрезов скважин
- •§ 4. Основные принципы выделения продуктивных и маркирующих горизонтов в разрезе скважин
- •§ 5. Построение геолого-геофизических разрезов скважин
- •§ 6. Вскрытие, опробование продуктивных пластов и испытание скважин
- •Глава II
- •§ 1. Корреляция разрезов скважин
- •§ 2. Составление корреляционных схем
- •§ 3. Учет искривления скважин
- •§ 4. Построение геологических профилей
- •§ 5. Составление типового и сводного разрезов
- •§ 6. Выделение коллекторов в однородных и неоднородных продуктивных пластах
- •§ 7. Построение карты поверхности топографического порядка
- •§ 8. Определение границ распространения коллекторов и построение карты эффективной мощности продуктивного пласта
- •§ 9. Особенности построения структурных карт продуктивного пласта
- •§ 10. Определение границ распространения залежей нефти и газа и построение карт эффективной мощности нефтегазонасыщенной части пласта
- •§11. Количественная оценка геологической неоднородности пластов с применением математических методов на эвм
- •Глава III режимы залежей нефти и газа
- •§ 1. Основные источники энергии в пластах
- •§ 2. Давление в нефтяных и газовых залежах
- •§ 3. Режимы нефтяных залежей
- •§ 4. Режимы газовых залежей
- •Глава IV
- •§ 1. Классификация запасов месторождений нефти и горючего газа
- •§ 2. Методы подсчета запасов нефти
- •9 Абрикосов и. X. И др. 241
- •§ 3. Методы подсчета запасов газа
- •§ 4. Принципы подсчета запасов сопутствующих компонентов
- •§ 5. Применение эвм для подсчета запасов нефти и газа
- •Глава V
- •§ 1. Рациональные системы разработки
- •§ 2. Геологические факторы, определяющие выбор рациональной системы разработки
- •§ 3. Основные геолого-технологические факторы, влияющие на величину коэффициента извлечения нефти из недр
- •§ 4. Геологическое обоснование систем разработки залежей нефти с заводнением
- •§ 5. Геологическое обоснование методов повышения коэффициента извлечения нефти
- •§ 6. Геологическое обоснование способов интенсификации работы скважин
- •§ 7. Шахтный способ разработки
- •§ 8. Геологические особенности разработки газовых месторождений
- •§ 9. Геологические особенности разработки газоконденсатных месторождений
- •§ 10. Особенности проектирования систем разработки нефтяных, и газовых залежей и требования к изученности £__, их геологической основы
- •Глава VI
- •§ 1. Стадии процесса разработки нефтяных залежей
- •§ 2. Методы геолого-промыслового контроля за разработкой нефтяных и газовых залежей
- •§ 3. Анализ состояния разработки залежей нефти и газа
- •§ 4. Методы регулирования разработки залежей
- •Глава VII
- •Список литературы
§ 3. Радиометрические исследования
Радиометрия как поисковый метод основана на изучении излучений горных пород и почв, которые обусловлены распадом в основном естественных радиоактивных элементов семейств урана и тория, а также радиоактивного изотопа калия.
Как правило, залежи нефти и газа отражаются в закономерном снижении ^-активности поверхностных отложений. Природа радиометрических аномалий над месторождениями нефти и газа до сих пор не выяснена.
Естественные радиоактивные элементы содержатся в почвооб-разующих породах и почвах в очень небольших (кларковых) количествах, регистрация их излучения требует создания высокочувствительной и точной аппаратуры. Следует подчеркнуть, что проводить измерения в естественном залегании элементов группы урана практически невозможно. Поэтому с помощью гамма-спектрометрической аппаратуры определяют торий, калий и радий, а содержание урана рассчитывают по радию, считая, что эти элементы находятся в почвах в радиоактивном равновесии.
Начальным этапом радиометрических исследований является площадная аэрогамма-спектрометрическая съемка. Для проведения съемки используются станции типа АСГ-48, которые монтируются на самолетах, а также ряд дополнительных приборов — радиоальтиметр, курсограф и др. Выбор маршрутов при съемке определяется направлением предполагаемых геологоструктурных элементов. Наиболее рациональный масштаб съемки 1 : 100 000 или 1 : 50 000; оптимальная высота полета 40+5 м; скорость полета в среднем 160 км/ч.
Следующим этапом исследований являются наземные автогамма-спектрометрические работы с помощью станций АГС-ЗМ, устанавливаемых на автомашинах. Наземные работы сопровождаются отбором образцов на точках наблюдения для последующих контрольных химических определений радиоактивных элементов. 174
Съемка проводится в основном сетью параллельных маршрутов через 0,5—1,0 км с точками наблюдений через 250—500 м.
Для обработки результатов гамма-спектрометрических исследований широко используются математический аппарат и современная вычислительная техника. Результаты съемок изображаются в виде карт изосодержания урана (радия), тория, калия и торий-уранового (радиевого) отношения.
§ 4. Геохимические методы
Задачей геохимических методов поисков нефтяных и газовых месторождений как прямых методов является установление наличия или отсутствия залежей нефти и газа на основе геохимических исследований слоев, залегающих относительно близко от дневной поверхности. Эти исследования можно произвести при газовой и микробиологической съемках. Значительное место в комплексе геологопоисковых работ геохимические методы должны занимать при поисках литологических и стратиграфических залежей, особенно в условиях моноклинального залегания пород.
Газовый метод
В основу газовой съемки положена возможность вертикальной миграции газов и паров жидких углеводородов из нефтяных и газовых залежей через толщу пород до земной поверхности путем фильтрации и диффузии.
На первом этапе внедрения газовой съемки ее методика заключалась в отборе проб подпочвенного воздуха с глубины 2—3 м. В дальнейшем стал проводиться отбор образцов пород с той же глубины с последующей их дегазацией. На основе полученных аналитических данных строятся карты газонасыщенности пород для выявления газовых аномалий.
По мере накопления материалов газовой съемки было установлено, что в различных геологических условиях интенсивность миграции углеводородов неодинакова. В сейсмоактивных районах газовые аномалии выражены более четко. Там, где проникновение газов в верхние слои затруднено, газовые аномалии становятся нечеткими или мало отличными от фона, и обнаружить их можно лишь на более глубоких уровнях разреза. Это привело к необходимости разработки глубинной газовой съемки, названной сква-жинной газометрией. При скважинной газометрии производят систематический отбор проб промывочной жидкости. Наряду с исследованием промывочной жидкости в этих же скважинах выборочно определяется газонасыщенность пород. Глубина исследования газонасыщенности разреза определяется для каждого района с учетом особенностей его строения и составляет 150— 600 м.
175
Микробиологический метод
Микробиологический метод основан на способности определенных групп микроорганизмов потреблять углеводороды, окисляя их и используя энергию окисления для своей жизнедеятельности. Бактерии, потребляющие углеводороды, расселяются всюду, где имеются углеводородные газы, т. е. в почвах, коренных породах, в водах водоносных горизонтов, располагающихся выше нефтяных или газовых залежей. Исследования подземных вод и образцов пород, взятых из скважин, показали, что процессы микробиологического окисления углеводородных газов наиболее активно протекают вблизи земной поверхности, в зоне выветривания, хотя иногда прослеживаются на значительную глубину.
Основным видом работ рекогносцировочного характера является водная съемка, при которой объектом изучения служат грунтовые и пластовые воды. Сущность метода заключается в стерильном отборе и последующем анализе проб воды из родников, источников, колодцев, артезианских и других, эксплуатируемых на воду скважин. При необходимости в местах отсутствия водо-пунктов может быть опробовано несколько специально пробуренных скважин. Эта съемка .проводится обычно одновременно с газовыми и гидрохимическими исследованиями вод.
При более детальных исследованиях применяется грунтовая съемка, основанная на отборе и последующем анализе образцов подпочвенных отложений на присутствие бактерий, окисляющих метан, пропан и бутан. Пробы отбираются из специально пробуренных скважин глубиной 2—3 м и более, а также из канав и шурфов. Скважины размещаются по профилям, ориентированным вкрест предполагаемого простирания структур. Обычно расстояние между профилями устанавливается от 500 м до 2 км, а между скважинами по профилю — 100—500 м и более. Глубина скважин также выбирается конкретно для каждого района в зависимости от интенсивности биохимических и других процессов, протекающих в верхних горизонтах. Отбор пород из скважин производится или непосредственно с бура, или при помощи специальных керноотборников при соблюдении правил стерилизации. Обычно с разных глубин-отбирается по нескольку образцов для газового и микробиологического анализов.
Конечная задача микробиологических исследований независимо от различий их методики и техники заключается в том, чтобы, во-первых, выявить на площади съемки участки с аномальными значениями углеводородных показателей и, во-вторых, определить возможную связь этих аномалий с промышленными залежами нефти и газа. Первая часть задачи решается совместно с газовой и газово-керновой съемками, а вторая — в итоге завершающего этапа работ — геохимической и геологической интерпретации полученных результатов.
176-