
- •Илья Хрисанфович Абрикосов Игорь Соломонович Гутман
- •193144, Г. Ленинград, ул. Моисеенко, 10.
- •Введение
- •Раздел 1 общая геология
- •Глава I земля и вселенная § 1. Солнечная система
- •§ 2. Галактика
- •§ 3. Строение Вселенной
- •§ 4. Методы изучения Вселенной
- •§ 5. Гипотеза образования планет Солнечной системы
- •Глава II общая характеристика земли § 1. Форма и размеры Земли
- •§ 2. Понятие о массе и плотности Земли
- •§ 3. Магнетизм Земли
- •§ 4. Теплота Земли
- •Глава III строение земли
- •§ 1. Внешние оболочки Земли
- •§ 2. Внутренние оболочки и ядро Земли
- •Глава IV
- •§ 2. Экзогенные процессы
- •§ 3. Диагенез осадков
- •§ 4. Эндогенные геологические процессы
- •Глава V минералы земной коры
- •§ 1, Понятие о минералах
- •§ 2. Физические свойства минералов
- •§ 3. Классификация минералов по химическому составу
- •§ 4. Породообразующие минералы
- •Глава VI горные породы § 1. Понятие о горных породах
- •§ 2. Магматические породы
- •§ 3. Осадочные породы
- •§ 4. Метаморфические породы
- •Глава VII
- •§ 2. Методы исторической геологии
- •§ 3. Зарождение жизни на Земле
- •§ 4. Относительная геохронология
- •Геохронологическая шкала
- •§ 5. Методы определения- абсолютного возраста Земли
- •§ 6, Развитие органического мира
- •§ 7. Тектонические движения в докембрии, палеозое, мезозое и кайнозое
- •Раздел II основы геологии нефти и газа
- •Глава I
- •§ 2. Природный углеводородный газ '
- •4 Абрикосов и. X. И др. 97
- •Пример расчета псевдокритических давлений и температур
- •§ 3. Воды нефтяных и газовых месторождений
- •Классификация вод, по Сулину
- •§ 4. Происхождение нефти и газа
- •Глава II
- •§ 1. Понятие о породах-коллекторах
- •§ 2. Пористость пород
- •§ 3. Проницаемость пород
- •§ 4. Зависимость пористости и проницаемости от давления и температуры
- •§ 5. Нефтегазонасыщенность пород-коллекторов
- •§ 6. Понятие о покрышках
- •§ 7. Понятие о природных резервуарах и ловушках
- •§ 8. Понятие о залежах и месторождениях нефти и газа
- •§ 9. Типы залежей нефти и газа
- •§ 10. Миграция, аккумуляция нефти и газа и разрушение их залежей
- •Глава III нефтегазоносные провинции
- •§ 1. Понятие о нефтегазоносных провинциях, областях, районах
- •§ 2. Основные нефтегазоносные провинции ссср
- •5 Абрикосов и. X. И др.
- •Ставропольская газоносная область
- •Среднеобская нефтегазоносная область
- •§ 3. Основные
- •6 Абрикосов и. X. И др. 161
- •Раздел III
- •Глава I методы поисково-разведочных работ
- •§ 1. Методы геологических исследований
- •§ 2. Методы геофизических исследований
- •Гравиметрическая разведка
- •§ 3. Радиометрические исследования
- •§ 4. Геохимические методы
- •§ 5. Глубокое бурение
- •Глава II этапы и стадии поисково-разведочных работ
- •§ 1. Региональные работы
- •§ 2. Стадия подготовки площадей (структур) к глубокому поисковому бурению
- •§ 3. Поисковое бурение
- •§ 4. Разведочное бурение на месторождениях нефти
- •§ 5. Особенности разведки газовых и газоконденсатных месторождений
- •§ 6. Доразведка нефтяных и газовых месторождений в процессе их разработки
- •§ 7. Промышленная оценка открытых месторождений нефти и газа
- •§ 8. Оценка эффективности геологоразведочных работ на нефть и газ
- •Раздел IV нефтегазопромысловая геология
- •Глава I
- •§ 2. Рациональный комплекс геофизических исследований для различных категорий скважин
- •7 Абрикосов и. X. И др. 193
- •§ 3. Геохимические методы изучения разрезов скважин
- •§ 4. Основные принципы выделения продуктивных и маркирующих горизонтов в разрезе скважин
- •§ 5. Построение геолого-геофизических разрезов скважин
- •§ 6. Вскрытие, опробование продуктивных пластов и испытание скважин
- •Глава II
- •§ 1. Корреляция разрезов скважин
- •§ 2. Составление корреляционных схем
- •§ 3. Учет искривления скважин
- •§ 4. Построение геологических профилей
- •§ 5. Составление типового и сводного разрезов
- •§ 6. Выделение коллекторов в однородных и неоднородных продуктивных пластах
- •§ 7. Построение карты поверхности топографического порядка
- •§ 8. Определение границ распространения коллекторов и построение карты эффективной мощности продуктивного пласта
- •§ 9. Особенности построения структурных карт продуктивного пласта
- •§ 10. Определение границ распространения залежей нефти и газа и построение карт эффективной мощности нефтегазонасыщенной части пласта
- •§11. Количественная оценка геологической неоднородности пластов с применением математических методов на эвм
- •Глава III режимы залежей нефти и газа
- •§ 1. Основные источники энергии в пластах
- •§ 2. Давление в нефтяных и газовых залежах
- •§ 3. Режимы нефтяных залежей
- •§ 4. Режимы газовых залежей
- •Глава IV
- •§ 1. Классификация запасов месторождений нефти и горючего газа
- •§ 2. Методы подсчета запасов нефти
- •9 Абрикосов и. X. И др. 241
- •§ 3. Методы подсчета запасов газа
- •§ 4. Принципы подсчета запасов сопутствующих компонентов
- •§ 5. Применение эвм для подсчета запасов нефти и газа
- •Глава V
- •§ 1. Рациональные системы разработки
- •§ 2. Геологические факторы, определяющие выбор рациональной системы разработки
- •§ 3. Основные геолого-технологические факторы, влияющие на величину коэффициента извлечения нефти из недр
- •§ 4. Геологическое обоснование систем разработки залежей нефти с заводнением
- •§ 5. Геологическое обоснование методов повышения коэффициента извлечения нефти
- •§ 6. Геологическое обоснование способов интенсификации работы скважин
- •§ 7. Шахтный способ разработки
- •§ 8. Геологические особенности разработки газовых месторождений
- •§ 9. Геологические особенности разработки газоконденсатных месторождений
- •§ 10. Особенности проектирования систем разработки нефтяных, и газовых залежей и требования к изученности £__, их геологической основы
- •Глава VI
- •§ 1. Стадии процесса разработки нефтяных залежей
- •§ 2. Методы геолого-промыслового контроля за разработкой нефтяных и газовых залежей
- •§ 3. Анализ состояния разработки залежей нефти и газа
- •§ 4. Методы регулирования разработки залежей
- •Глава VII
- •Список литературы
§ 3. Осадочные породы
Формирование осадочных пород обусловлено экзогенными процессами. Среди осадочных пород выделяют обломочные, хемо-генные и органогенные породы.
Обломочные породы (кластические). Эти осадочные породы образуются в результате разрушения прежде существовавших пород, переноса их обломков к бассейну осадконакоп-ления и дифференциации в процессе осаждения.
Основной текстурной особенностью обломочных пород является их слоистость, которая может быть преимущественно горизонтальной, косой и неправильной. Выделяют также плойчатую текстуру.
Текстурные особенности обломочных пород определяются характером, взаиморасположением и количественным соотношением зерен породы и цементирующих веществ.
Цементом называются минеральные вещества, заполняющие в осадочных породах промежуток между зернами и обломками породы и связывающие их между собой. Различают мономинеральные и полиминеральные цементы. Состав последних крайне разнообразен. Чаще всего встречаются различные глинистые и карбонатные цементы. Цементирующее вещество может развиваться в местах контакта зерен породы (контактовый цемент), неравномерно распределяться в породе в виде локальных участков (пятнистый, или сгустковый), обволакивать зерна породы в виде пленки (пленочный),развиваться в порах между соприкасающимися
74
зернами (поровый). Если несоприкасающиеся зерна породы погружены в цементирующую массу, то такой цемент называют ба-зальным. В осадочных породах чаще встречаются комбинации двух или более перечисленных типов цементов.
В соответствии со структурными особенностями обломочные породы подразделяются на крупно-, средне-, мелко- и тонкообломочные.
Крупнообломочные породы (псефиты) состоят преимущественно из обломков различного состава размером более 2 мм. Различают крупнообломочные породы несцементированные и сцементированные.
Среди несцементированных пород скопления угловатых неока-танных обломков с размером в поперечнике свыше 100 мм называются глыбами, от 100 до 10 мм — щебнем, от 10 до 2 мм — дресвой. Их образование связано с выветриванием горных пород. Породы, состоящие из скатанных обломков тех же размеров, соответственно называются валунником (>100 мм), галечником (10—100 мм) и гравием (2—10 мм). Валунник (скопление валунов) образуется при скатывании глыб водами горных рек, морскими волнами, движущимися ледниками; галечник и гравий — в результате окатывания и истирания глыб, валунов и щебня водами рек, морей и озер.
Среди сцементированных грубообломочных пород различают брекчию и конгломерат. Брекчия — сцементированные неокатан-ные обломки (глыбы, щебень и дресва), конгломерат — сцементированные скатанные обломки (валуны, гравий и галька).
Среднеобломочные породы (псаммиты) состоят из обломков с размером зерен 0,1—2 мм. Они могут быть несцементированными — пески и сцементированными — песчаники. По размеру зерен пески и песчаники разделяют на грубозернистые (1—2 мм), крупнозернистые (0,5—1 мм), среднезернистые (0,25—0,5 мм) и мелкозернистые (0,1—0,25 мм).
По составу пески и песчаники могут быть мономинеральными и полимиктовыми. Мономинеральные пески и песчаники получают название того породообразующего минерала, из которого они преимущественно сложены (например, кварцевый песок, глауко-нитовый, полевошпатовый).
По составу цемента песчаники могут быть глинистыми, извест-ковистыми, железистыми, кремнистыми и т. п. Цвет песков и песчаников зависит от цвета преобладающих обломков, а у песчаников — и от цвета цементирующего вещества. Пески и песчаники служат хорошими коллекторами для нефти и газа, с ними могут быть связаны и другие полезные ископаемые (алмазы, золото, платина, магнетит и др.).
Мелкообломочные породы (алевриты) состоят из частиц с размером преимущественно 0,01—0,1 мм (по А. Н. Заварицкому).
К несцементированным мелкообломочным породам относятся собственно алевриты, лёссы, суглинки, супеси.
75
Алевриты представляют собой рыхлую осадочную породу, промежуточную между песками и глинами. Сцементированные алевриты называются алевролитами. Алевролиты также могут служить коллекторами для нефти и газа.
Тонкообломочные породы ( пелиты) — глинистые породы с размером частиц менее 0,01 мм, причем размер трети частиц не превышает 0,001 мм. Состоят из глинистых минералов, минералов обломочного (слюды, кварц, полевые шпаты и др.) и химического (карбонаты, сульфаты) происхождения. Типичными глинистыми минералами являются каолинит и монтмориллонит. Глина, состоящая из каолинита, называется каолиновой (белые глины), а из монтмориллонита — бентонитовой.
Плотные глины, сцементированные кремнеземом, называются аргиллитами. Глины и аргиллиты служат хорошими покрышками для залежей нефти и газа.
Среди обломочных пород различают терригенные и карбонатные.
Терригенные породы — песок, песчаник, алеврит, алевролит, глина.
В упрощенной форме их можно рассматривать как механические смеси конечных продуктов, состоящих из песка и глины, скрепленных цементом и способных замещать друг друга в разных сочетаниях под воздействием различных факторов. Благодаря этому облегчается классификация терригенных пород с помощью механического или гранулометрического анализа.
Гранулометрическим анализом называется совокупность приемов, позволяющих производить разделение породы на составляющие ее части разного размера (фракции) с последующим определением процентного содержания каждой фракции, называемого гранулометрическим составом породы. Определение гранулометрического состава производится ситовым и мокрым методами. Гранулометрическому анализу предшествует определение карбо-натности породы, по которой судят о степени сцементированности зерен и заполнении пор цементом.
Карбонатные породы сложены в основном кластическими известняками, состоящими из скатанных карбонатных зерен разного размера. Проницаемые и пористые разности тех и других пород служат коллекторами нефти и газа.
Хемогенные породы. Хемогенные породы образуются при выпадении растворенных веществ из истинных и коллоидных растворов на дне водоемов.
Структура пород, связанных с выпадением веществ из истинных растворов, — кристаллическая, а из коллоидных — скрыто-кристаллическая. Текстура этих пород преимущественно слоистая, но иногда может быть массивной.
Основные хемогенные породы, с коллекторами которых связано более половины мировых выявленных запасов нефти, представлены известняками и доломитами.
76
Известняки — весьма распространенная порода, состоящая из минерала кальцита; бурно реагирует с соляной кислотой; цвет белый, желтоватый, серый. Типичными представителями известняков хемогенного происхождения являются известковый туф, оолитовые известняки, плотные тонкозернистые известняки.
Доломиты по внешнему виду похожи на известняки; образуются путем доломитизации известняков вследствие замещения в них части кальция магнием, а также путем химического выпадения из раствора при большом содержании в воде магния. В отличие от известняка порошок доломита слабо вскипает при действии на него соляной кислотой.
Среди карбонатных пород следует отметить еще мергели. Это известково-глинистая порода, у которой глинистые частицы сцементированы карбонатным цементом. В отличие от известняка на поверхности мергеля после капли соляной кислоты остается .грязно-серое пятно.
Из других хемогенных пород рассмотрим следующие.
Галоидные породы, среди которых наиболее часто встречаются соли натрия и калия, образуются обычно в результате отложения из водных бассейнов; залегают в виде пластов большой мощности; нередко служат хорошими покрышками для залежей нефти и газа. Галоидные породы являются ценным минеральным сырьем.
Сернокислые породы (гипс, ангидрит) образуются из водных растворов в условиях замкнутых бассейнов (озер и лагун); нередко гипсы и ангидриты переслаиваются с отложениями солей; ангидриты выпадают из растворов более насыщенных, чем те, из которых выпадает гипс; ангидриты и гипсы встречаются в осадочных породах, особенно в доломитах. Ангидриты могут служить коллекторами для нефти и газа.
Органогенные породы. Эти породы формируются из остатков животных и растительных организмов. Структура их может быть органогенно-обломочной и детритусовой (детрит — перетертые обломки раковин). Текстура слоистая, иногда массивная.
К органогенным породам относят известняки органогенного происхождения. Они образуют известковые напластования, типичными представителями которых являются биогермы (рифы) и биостромы. С известняками рифовых массивов могут быть связаны залежи нефти и газа. Разновидность органогенных известняков — мел.
Ископаемые угли представляют собой ряд естественных твердых горючих ископаемых растительного происхождения, содержащих некоторое количество минеральных примесей. Угли характеризуются большим многообразием, что обусловлено их происхождением и степенью метаморфизма.
Различное происхождение отражается в петрографическом составе углей. Степень метаморфизма определяется физико-химическими и петрографическими показателями, а также золь-
77
ностью. По происхождению ископаемые угли разделяются на две основные группы: гумолиты и сапропелиты. Гумолиты образовались из высших растений, а сапропелиты — из низшего (водорослей) и животного планктона в условиях зарастающих озер.
В свою очередь, гумолиты подразделяются] на гумиты и липто-биолиты. Образование гумитов связано с разложением стеблевых частей высших растений в обводненных, сухих и частично проточно-пойменных болотах. К гумитам относится подавляющее большинство встречаемых в природе углей. Гумиты разделяются на три основных класса, отличающихся степенью метаморфизма: бурые, каменные и антрациты. Липтобиолиты образовались в результате накопления стойких (древесных) частей растений при биохимическом разложении растительного материала в проточно-пойменных болотах. Наряду с углеродом в состав углей входят водород, кислород, азот, сера, глинистые минералы и др. От минеральных примесей зависит зольность ископаемых углей, колеблющаяся от 1 до 50 %. При зольности свыше 50 % угли превращаются в углистые глины или углистые аргиллиты.
Вместе с битумами угли представляют собой минеральные образования органического происхождения, способные гореть и объединяемые под общим названием — каустобиолиты.