Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы_ТМП_26с.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.13 Mб
Скачать

Ответы на вопросы по курсу «Теория металлургических процессов»

1.Испарение влаги и разложение карбонатов в доменной печи.

Термодинамика разложения карбонатов

Влага в доменную печь вносится железной рудой – до 6 %, коксом – 5 %, добавками – до 4 %, а также привозными агломератом и окатышами. Основная часть влаги - гигроскопическая (физическая) и меньшая часть – гидратная (химическая). Гидратная влага присутствует в бурых железняках в виде Fe2O3·nH2O, а также в рудах с каолинитовой пустой породой – Al2O3·2SiO2·2H2O.

Гигроскопическая влага легко удаляется на колошнике при температуре до 500С, на что кокс не перерасходуется. Однако большие содержания влаги приводят к существенным расстройствам хода печи и похолоданиям в связи с повышенными затратами тепла. Например, увеличение в коксе содержания влаги на 1% ( 5 кг / тонна чугуна), повышает его расход на 1%. Установлено, что изменение содержания влаги в материалах, а чаще всего в коксе, сразу же корректируют расход кокса в подаче.

Гидратная влага начинает испарятся при температуре более 200С и заканчивает - при более 600С, когда уже идут процессы восстановления. При этом может идти реакция:

При более высокой температуре испаряется влага из каолинита. Остаток влаги до 5% удаляется даже при 800 – 1000С. При этом возможны реакции:

Видно, что эти реакции идут с поглащением тепла, что нежелательно, поэтому их следует переносить за пределы доменной печи. Чтобы уменьшить вероятность взаимодействии влаги с углеродом кокса, необходимо дробить руды до минимально возможных приделов – 10 – 20 мм.

Обычный известняк содержит 96 – 98 % CaCO3, доломитизированный – столько же CaCO3·MgCO3.

При нагревании карбонаты разлагаются по реакции:

Как видно, разложение сопровождается поглощением тепла. Константа равновесия реакции, в которой MeCO3 и MeO находятся в виде чистых кристаллических фаз, определяется равновесным парциональным давлением CO2, называемым упругостью диссоциации карбоната и зависящего только от температуры.

Ч ем ниже карбоната, тем он прочнее. С увеличением температуры растет, а прочность карбоната снижается. Но с ростом температуры парциальное давление CO2 в газовой фазе – снижается. Нарушение неравенства в точке “А” соответствует началу разложения карбоната. Изменение же знака соответствует образованию карбоната.

Самым прочным является карбонат кальция, упругость диссоциации которого описывается уравнением:

Разложение карбоната происходит при температурах правее кривой 2, где . Левее же кривой 2 идет образование карбонатов, т.е. реакция (1) смещается влево.

Из теории металлургических процессов известно, что карбонат кальция при атмосферном давлении разлагается при температуре около 920С. В доменной печи давление газа в середине шахты, где завершается разложение известняка, достигает 270 кПа, поэтому здесь разложение известняка завершается при более высокой температуре – около 975С (точка “B” на рисунке), когда превышает давление в этой доменной печи. Эта температура называется температурой химического кипения CaCO3. Она во времени остается постоянной до полного разложения всего куска карбоната.

Завершается разложение CaCO3 уже в нижних зонах печи, где активно идет реакция:

т.е. идет с поглощением большого количества тепла.

Чтобы избежать взаимодействия углерода кокса с CO2 известняка, необходимо дробить куски известняка до размеров 50 – 60 мм, чтобы они смогли разложиться до 1000С, иначе это вызовет перерасход кокса.

Практикой установлено, что до 70% СО2 взаимодействует с углеродом кокса. Перерасход кокса вызывается следующими причинами:

  • отрицательным тепловым эффектом реакции диссоциации карбоната, который частично компенсируется лишь горением дополнительного количества кокса у фурм;

  • реакцией взаимодействия СО2+С;

  • понижением восстановительного потенциала газа в связи с разбавлением его продуктом разложения карбонатов – СО2

Увеличение расхода кокса снижает производительность печи и интенсивность по газу.

Видя отрицательное влияние карбонатов на показатели доменной плавки, исследователи предложили вводить известняк в агломерат при его спекании и получили офлюсованный агломерат, а вместе с ним (экономию тепла – около 6,5 МДж на кг СО2 карбонатов. По расчетам Рамма, замена (вывод из шихты доменной печи) 1 кг известняка экономит 0,4 кг кокса. Фактическая же экономия составляет меньшую величину.

В настоящее время известняк в доменную печь дается в минимальных количествах – только для срочных подшихтовок в результате быстрых изменений теплового состояния: при похолодании из SiO2 шлака восстанавливается меньше кремния, и основность шлака снижается и наоборот.

2.Стандартное химическое сродство металлов к кислороду, сере,

галогенам. Взаимосвязь сродства и окислительно-восстановительных

процессов

Чтобы можно было сравнивать между собой поведение веществ в однотипных реакциях или одних и тех же веществ в разных реакциях следует отсчитывать их способность к химическому реагированию, во всех случаях необходимо принимать исходное состояние системы одинаковым.

Лучше всего, если это будет стандартное состояние, В этом случае конденсированные вещества должны быть чистыми, а газы – иметь парциальное давление равное 1 атмосфере.

У равнение Вант-Гоффа превращается в уравнение . Для различных веществ строятся графики зависимости , и по ним можно дать любые сравнительные оценки относительно поведения веществ при процессах.

температуры начала восстановления, соответственно Cu,Fe,Ca.

Из данного графика видно, что:

-почти все металлы в области низких, умеренных и высоких температур способны реагировать с кислородом и образовывать устойчивые оксиды;

-чем более отрицательна величина реакции образования оксида, тем выше сродство металла к кислороду и более устойчивыми образуются оксиды. (Оксид кальция наиболее прочный, наименее прочный – оксид ртути);

-с повышением температуры величина реакции образования оксидов становится более положительной. Сродство металлов к кислороду уменьшается, уменьшается также термодинамическая прочность оксидов;

-металлы и вещества, у которых более высокое сродство к кислороду, используют в качестве восстановителей, а малопрочные оксиды – в качестве окислителей;

-у углерода сродство к кислороду с ростом температуры повышается, значит, его можно использовать в качестве универсального восстановителя, с его помощью можно восстанавливать любой оксид, если будет достигнута соответствующая температура.

Подобная графическая зависимость существует и для сульфидов и для галогенидов, однако, в таком случае, все линии располагаются в области менее отрицательных значений .

Термодинамика восстановительной реакции может быть оценена следующим образом:

Где В – восстановитель.

Если реакции восстановления выразить через реакции (1) и (2), тогда

Величины и сами по себе являются отрицательными, а это означает, что будет меньше нуля, если Х будет более отрицательно, чем величина .

Таким образом, если выбрать в качестве восстановителя вещество с более высоким сродством к кислороду ( будет более отрицательно), тогда будет заведомо известно, что реакция восстановления может идти вправо. Насколько полно будет идти данный процесс, зависит от различия в сродстве к кислороду у металла и восстановителя: чем это различие больше, тем реакция восстановления идет лучше. И, наоборот, если будет больше нуля, тогда реакция восстановления невозможна, и место имеет окислительный процесс.

Тот же характер носят и реакции восстановления (окисления) металлов из сульфидов и галогенидов.