
- •1. Що таке електрична енергія, її застосування?
- •2. Джерела, приймачі, споживачі електроенергії?
- •4. Використання електроенергії. Що таке енергоефективність та енерговикористання?
- •5. Використання електричної енергії. Що таке енергозбереження т а політика енергозбереження
- •6. Класифікація приймачів електричної енергії за ознакою перетворення енергії. Їх застосування
- •7. Групи електроприймачів. Систематизація електроприймачів електроенергії за основними експлуатаційно – технічними ознаками.
- •8. Класифікація приймачів за режимом роботи. Коротка характеристика.
- •9. Класифікація споживачів за родом струму. Коротка характеристика.
- •10. Класифікація споживачів за частотою змінного струму. Коротка характеристика.
- •11. Класифікація споживачів за кількістю фаз та номінальною напругою. Коротка характеристика.
- •12. Класифікація споживачів за номінальною потужністю та за забезпеченням надійності і безперебійності живлення. Коротка характеристика.
- •13. Номінальні параметри режиму. Визначення номінальної потужності електроприймачів.
- •14. Характеристика приймачів за споживанням реактивної потужності.
- •15. Поняття пускового струму електроприймачів.
- •16. Характеристика електроприймачів за симетрією фаз. Поняття лінійності і не лінійності характеристики опорів фаз.
- •19.Потужність, що споживається індуктивністю. Визначення середнього значення. Фізичний зміст.
- •20. Механізм впливу конденсатора на обмін потужностями в мережі. Компенсація реактивної потужності.
- •21. Поняття коефіцієнта реактивної потужності, повної потужності, коефіцієнта потужності.
- •22. Чому концентрація реактивної потужності економічно недоцільна.
- •23.Основні причини низького коефіцієнта потужності в електроустановках.
- •24. Шляхи зниження споживання електроустановкою реактивної потужності.
- •25. Заміна малонавантажених двигунів двигунами меншої потужності. Порядок розрахунку асинхронного двигуна при довільному завантаженні.
- •26. Заміна малонавантажених двигунів двигунами меншої потужності. Визначення сумарних витрат двигуна.
- •Види з’єднань трифазних електричних кіл.
- •29. Класифікація трифазних кіл
- •30. Що таке електричне навантаження та графіки навантаження споживача. Їх характеристика.
- •33. Що таке максимальне навантаження електроприймачів. Його види.
- •34. Що таке розрахункове навантаження електроприймачів. Його види.
- •37. Що таке час найбільших втрат, коефіцієнт використання активної потужності та коефіцієнт увімкнення електроприймачів.
- •38. Що таке коефіцієнт завантаження та коефіцієнт максимуму електроприймачів.
- •41. Поділ трансформаторів за кількістю фаз
- •42. Принцип дії трансформатора.
- •43. Призначення та характеристика вимірних трансформаторів.
- •46. Режим кз і хх трансформатора. Їх характеристика.
- •47. Робочий режим трансформатора. Його характеристика.
- •48. Втрати потужності в трансформаторі.
- •49. Коефіцієнт корисної дії трансформатора.
- •50. Паспортні дані трансформаторів. Визначення номінальних струмів обмоток трансформатора.
- •51. Параметри трансформатора, які визначають за напругою кз та втратами кз, за значенням струму хх та потужності хх.
- •52. Установки електропривода. Їх характеристика, режими роботи й застосування.
- •53. Вибір електродвигунів для урохомлень.
- •54. Асинхронний двигун. Принцип дії.
- •Асинхронний двигун. Визначення ковзання, ерс, електромагнітного моменту, електромагнітної та механічної потужності двигуна.
- •Втрати в асинхронному двигуні, коефіцієнт корисної дії та коефіцієнт потужності асинхронних двигунів.
- •57. Синхронний двигун. Принцип дії та переваги, коефіцієнт корисної дії.
- •58. Запуск синхронного двигуна
- •59. Двигун постійного струму. Принцип дії, види зєднання обмоток збудження і якоря.
- •60. Електротехнологічні установки. Їх вплив на матеріал, що обробляється.
- •61. Класифікація електротермічних установок.
- •62. Електроустановки нагрівання опором. Принцип дії, нагрівальні елементи.
- •63. Електричні печі опору для плавлення металів.
- •64. Електроустановки індукційного нагрівання. Принцип дії.
52. Установки електропривода. Їх характеристика, режими роботи й застосування.
Найпоширенішими і складними електроприймачами є системи електропривода. Установки електропривода перетворюють електричну енергію на механічну і призначені для надання руху виконавчим механізмам за допомогою електричних машин ( електродвигунів ) змінного і постійного струму. У сучасних електроприводах можна використовувати електричні машини потужністю від часток вата до десятків мегават, які часто живляться від мережі змінного струму через керовані перетворювачі ( перетворювач частоти змінного струму або перетворювачі змінного струму на постійний). Електричні машини застосовують для надання обертового чи лінійного руху деталям верстатів для оброблення дерева, металів чи для переміщення вантажів на відстань ( транспортери, лебідки шнекові механізми, конвеєри тощо), для урухомлення підіймально-транспортних механізмів (підіймальні крани, ліфти), для урухомлення електричного транспорту (трамваїв, тролейбусів, електропоїздів наземного та підземного транспорту), для забезпечення роботи вентиляторів, помп, компресорів,, а також побутових механізмів (фенів, кухонних комбайнів, електробритв). У цих механічних пристроях окремі їх частини можуть здійснювати обертовий чи лінійний рух.
Залежно від характеру виробничих і загально промислових механізмів електропривід може працювати в тривалому, короткочасному, повторно-короткочасному або складніших, часто нерегулярних режимах. Запуск, реверс (зміна напрямку обертання), динамічне гальмування, різка зміна навантаження та інші перехідні явища у механізмах електричного приводу можуть супроводжуватися поштовхами струму в електропостачальних системах, що істотно ускладнює їх роботу.
53. Вибір електродвигунів для урохомлень.
Електродвигуни для урохомлення підбирають враховуючи наступні умови:
Механічні характеристики двигуна повинні відповідати вимогам виробничого механізму.
Потужність двигуна під час роботи потрібно використовувати як найповніше.
Параметри двигуна: напруга і частота струму повинні відповідати умовам його експлуатації.
Конструктивне виконання двигуна повинно відповідати умовам його експлуатації.
Двигун повинен бути зручним у використанні для обслуговуючого персоналу.
54. Асинхронний двигун. Принцип дії.
Асинхронні двигуни складаються з нерухомої частини статора і рухомої ротора. Статор і ротор виготовляються з листів електротехнічної сталі товщиною 0,5 мм. В спеціальних пазах виконаних вздовж внутрішньої поверхні статора і зовнішньої поверхні ротора укладають обмотки статора і ротора відповідно. Осердя статора закріпляють у статині встановлений на фундаменті. Феромагнітне осердя ротора монтують на підшипники кочення, які вмонтовані у щитки. Щитки прикріплюють до статини.
Асинхронні двигуни бувають з фазним ротором і короткозамкненим.
У електродвигуні з коротко замкнутим ротором пази осердя ротора заливають розтопленим алюмінієм, а початки і кінці утворені в пазах стрижнів відповідно сполучають кільцями так, щоб вони утворювали побудову клітки для білки.
Двигуни з фазним ротором мають трифазну обмотку ротора кінці якої сполучені між собою, а початки виведені на контактні кільця закріплені на валу ротора. Кільця ізольовані від вала та між собою обертаються разом з валом і з’єднані з зовнішнім колом через контактні щітки, у зовнішнє коло ротора вмикають реостати. При вмиканні в мережу такого двигуна виникає обертове магнітне поле.