
- •1. Назначение, область применения, классификация аналоговых электронных устройств
- •2. Усилитель как основной элемент аэу
- •3. Классификация усилителей
- •4. Параметры усилителей: Выходные и входные данные
- •5. Параметры усилителей: Коэффициенты усиления
- •6. Параметры усилителей: Частотная и фазовая характеристики
- •7. Параметры усилителей: Переходная характеристика
- •8. Линейные искажения
- •9. Параметры усилителей: Связь между частотной, фазовой и переходной характеристиками
- •10. Параметры усилителей: Помехи и собственные шумы в аэу
- •11. Параметры усилителей: Амплитудная характеристика
- •12. Параметры усилителей: Нелинейные искажения
- •13. Параметры усилителей: Потребляемая мощность и коэффициент полезного действия
- •14. Четырехполюсники, их параметры и эквивалентные схемы
- •15. Определение показателей усилителя через параметры
- •16. Структурные схемы аэу с обратной связью
- •17. Использование параметров четырехполюсника для описания усилителей с обратной связью
- •18. Коэффициент петлевого усиления и глубина обратной связи
- •19. Влияние обратной связи на коэффициент сквозного усиления
- •20. Влияние обратной связи на входное и выходное сопротивления усилителя
- •21. Влияние обратной связи на стабильность усилителя
- •22. Влияние обратной связи на частотную, фазовую и переходную характеристики усилителя
- •23. Влияние обратной связи на нелинейные искажения, шумы и динамический диапазон усилителя
- •24. Включение биполярного транзистора по схеме с общим эмиттером
- •25. Включение биполярного транзистора по схеме с общей базой
- •26. Включение биполярного транзистора по схеме с общим коллектором базой
26. Включение биполярного транзистора по схеме с общим коллектором базой
Большинство активных элементов имеют по три основных электрода: эмитирующий, управляющий и собирающий. Для биполярного транзистора такими электродами являются эмиттер, база и коллектор. При включении такого активного элемента в схему четырёхполюсника один из его электродов оказывается общим для входной и выходной цепи. Названием этого электрода, являющегося общим для входа и выхода, определяется схема включения активного элемента.
В данном включении коллектор является общим (по отношению к сигналу) для входа и выхода. Сигнал подаётся между базой и коллектором, а снимается между эмиттером и коллектором (рис. 3.11).
В этой схеме постоянный ток I0Б базы протекает от +Е0Б через Е1, R1, переход база-эмиттер, сопротивление нагрузки R2 к -E0Б. Постоянный ток коллектора I0К протекает от +E0К через коллектор, эмиттер, сопротивление R2 к -E0К. Входной ток iБ протекает от (+)E1 через R1, базу, эмиттер, R2, источник E0Б к (-)E1. Выходной ток iК течёт от эмиттера через R2, E0К, коллектор, эмиттер. В цепи эмиттера ток коллектора всегда имеет такое же направление, как и ток базы. Следовательно, выходной ток, протекая через сопротивление R1, сверху вниз создаёт на нём падение напряжения u2 с плюсом вверху и минусом внизу. Сравнивая полярность входного сигнала и напряжения u2, видим, что схема с ОК не переворачивает фазу усиливаемого сигнала.
Коэффициент усиления по напряжению, равный отношению напряжения u2 = uЭК к входному напряжению uБК, для схемы ОК всегда меньше единицы, т.к. uБК=uБЭ+ uЭК:
Коэффициент усиления по току
оказывается практически таким же, как и в схеме с ОЭ.
Коэффициент усиления по мощности для схемы с ОК, равный произведению КК на КiK, заметно превышает единицу, но оказывается меньше, чем для схемы с ОЭ.
Входное сопротивление для схемы с ОК существенно зависит от сопротивления нагрузки и оказывается значительно больше, чем в других схемахвключения транзистора. Для определения входного сопротивления поделим входное напряжение u1 = uБК на входной ток iБ:
Входное сопротивление схемы с ОК может достигать нескольких МОм.
Выходное сопротивление схемы с ОК оказывается наименьшим для трёх схем включения и существенно зависит от сопротивления источника сигнала. Для определения выходного сопротивления подадим на выходные зажимы напряжение uЭК, исключив при этом из схемы источник сигнала Е1, но сохранив его внутреннее сопротивление R1. Теперь для выходного сопротивления можно записать
Выходное сопротивление схемы может находиться в пределах от нескольких Ом до сотен Ом.
Сравнивая параметры схемы с ОК с аналогичными для схемы с ОЭ, видим, что в схеме с ОК уменьшился коэффициент усиления по напряжению, выросло входное сопротивление и появилась его зависимость от величины нагрузки, уменьшилось выходное сопротивление и стала очень заметной его зависимость от сопротивления источника сигнала.
Благодаря наличию отрицательной обратной связи частотная характеристика для этой схемы значительно расширяется и ограничивается частотой верхнего среза.
Зависимость входного сопротивления от частоты представлена на рис. 3.14. На низких частотах ZВХ определяется выражением (3.28) и оказывается весьма значительным благодаря влиянию обратной связи. С ростом частоты выше f1 ухудшаются частотные свойства транзистора, уменьшается глубина ОС, и входное сопротивление падает. На частотах, превышающих f2, входное сопротивление стремится к величине rБ', так как ОС уже не действует, а величина сопротивления ёмкости CК становится близкой к короткому замыканию.
Выходное сопротивление ZВЫХ на низких частотах оказывается малой величиной из-за влияния ООС по напряжению и определяется выражением (3.29). В диапазоне частот выше f1 глубина ОС уменьшается, а выходное сопротивление растёт, что позволяет говорить о индуктивном характере ZВЫХ (рис. 3.15).
Нелинейные искажения в схеме с ОК благодаря наличию ООС намного меньше, чем в схеме с ОЭ. Этот выигрыш особенно заметен при малых значениях сопротивления источника сигнала R1 (см. рис. 3.6). В этом случае создаются наиболее благоприятные условия для действия последовательной по входу обратной связи. С ростом R1 глубина последовательной ООС уменьшается, и нелинейные искажения растут, приближаясь к уровню, характерному для схемы с ОЭ.
Следует отметить, что схему с ОК часто называют эмиттерным повторителем за то, что сигнал на выходе почти не отличается от сигнала на входе (коэффициент передачи близок к единице, сигнал на входе и выходной сигнал имеют одинаковую фазу, искажения формы сигнала практически отсутствуют).