
- •1. Назначение, область применения, классификация аналоговых электронных устройств
- •2. Усилитель как основной элемент аэу
- •3. Классификация усилителей
- •4. Параметры усилителей: Выходные и входные данные
- •5. Параметры усилителей: Коэффициенты усиления
- •6. Параметры усилителей: Частотная и фазовая характеристики
- •7. Параметры усилителей: Переходная характеристика
- •8. Линейные искажения
- •9. Параметры усилителей: Связь между частотной, фазовой и переходной характеристиками
- •10. Параметры усилителей: Помехи и собственные шумы в аэу
- •11. Параметры усилителей: Амплитудная характеристика
- •12. Параметры усилителей: Нелинейные искажения
- •13. Параметры усилителей: Потребляемая мощность и коэффициент полезного действия
- •14. Четырехполюсники, их параметры и эквивалентные схемы
- •15. Определение показателей усилителя через параметры
- •16. Структурные схемы аэу с обратной связью
- •17. Использование параметров четырехполюсника для описания усилителей с обратной связью
- •18. Коэффициент петлевого усиления и глубина обратной связи
- •19. Влияние обратной связи на коэффициент сквозного усиления
- •20. Влияние обратной связи на входное и выходное сопротивления усилителя
- •21. Влияние обратной связи на стабильность усилителя
- •22. Влияние обратной связи на частотную, фазовую и переходную характеристики усилителя
- •23. Влияние обратной связи на нелинейные искажения, шумы и динамический диапазон усилителя
- •24. Включение биполярного транзистора по схеме с общим эмиттером
- •25. Включение биполярного транзистора по схеме с общей базой
- •26. Включение биполярного транзистора по схеме с общим коллектором базой
25. Включение биполярного транзистора по схеме с общей базой
Большинство активных элементов имеют по три основных электрода: эмитирующий, управляющий и собирающий. Для биполярного транзистора такими электродами являются эмиттер, база и коллектор. При включении такого активного элемента в схему четырёхполюсника один из его электродов оказывается общим для входной и выходной цепи. Названием этого электрода, являющегося общим для входа и выхода, определяется схема включения активного элемента.
В рассматриваемом включении база транзистора является общим электродом для входной и выходной цепей. Входной сигнал действует между эмиттером и базой, а выходной – между коллектором и базой (рис. 3.7).
Постоянные токи I0Э, I0K, I0Б, протекающие в схеме (см. рис. 3.7), определяются типом транзистора и полярностью источников Е0Б и Е0К. Постоянный ток базы I0Б протекает от +Е0Б через базу, эмиттер, источник сигнала Е1, R1, к -Е0Б. Постоянный ток коллектора I0К течет от +E0К через сопротивление R2 участок коллектор–эмиттер транзистора, источник сигнала Е1, R1 к –E0К. Мгновенные значения переменных токов задаются источником сигнала Е1. Переменный ток эмиттера iЭ течёт от (+)Е1 через R1 к эмиттеру. В эмиттере этот ток разветвляется на базовую iБ и коллекторную iK составляющие. Базовая составляющая протекает от эмиттера к базе, далее через Е0Б к (–)Е1. Коллекторная часть тока течёт от эмиттера в коллектор, далее через сопротивление R2, источник Е0К к (–)Е1. Коллекторный ток, протекая по сопротивлению R2, создаёт на нём падение напряжения u2 c плюсом вверху и минусом внизу. Сравнивая полярности напряжения u2 и ЭДС Е1, делаем вывод, что схема с ОБ не изменяет полярность усиливаемого сигнала.
Коэффициент усиления по напряжению для схемы с ОБ равен отношению выходного напряжения u2 = uКБ к входному u1 = uБЭ. Анализируя внешний контур схемы рис.3.7, можно записать uКБ = uБЭ + uКЭ. Теперь
где К – коэффициент усиления по напряжению схемы с ОЭ. Из (3.23) следует, что схема с ОБ обладает практически таким же усилением по напряжению, как и схема с ОЭ.
Коэффициент усиления по току:
где h21 = iК/iБ – коэффициент усиления по току схемы с ОЭ.
Коэффициент усиления по мощности, равный произведению KБ на KiБ, для схемы с ОБ значительно больше единицы, но меньше, чем для схемы с ОЭ.
Входное сопротивление транзистора, включённого по схеме с ОБ, оказывается существенно меньше, чем в схеме с ОЭ (из-за большого входного тока iЭ):
Для случая, когда R2→0, выражение (3.23) может быть переписано в виде
где h11 и h21 – параметры схемы с ОЭ.
Величина входного сопротивления для схемы с общей базой лежит в пределах нескольких Ом или десятков Ом для маломощных транзисторов и может быть меньше Ома для мощных.
Выходное сопротивление в схеме с ОБ зависит от сопротивления источника сигнала и заметно превышает выходное сопротивление схемы с ОЭ.
Благодаря малому входному сопротивлению влияние входной динамической емкости в каскаде с транзистором, включенным по схеме с общей базой, оказывается существенно меньшим и проявляется на более высоких частотах, чем в каскаде на транзисторе, включенном по схеме с общим эмиттером. Полоса пропускания каскада с ОБ получается значительно шире, чем в каскаде с ОЭ.
Наличие обратной связи в схеме с ОБ позволяет получить более высокую частоту среза в области верхних частот, чем в схеме с ОЭ. Частота верхнего среза для сквозного коэффициента усиления существенно зависит от сопротивлений R1 и R2, влияющих на глубину обратной связи. Известно, что глубина обратной связи по току растёт с уменьшением сопротивления нагрузки R2. Для параллельной по входу ОС увеличение сопротивления R1 также ведёт к росту глубины обратной связи. При увеличении сопротивления R2 обратная связь по току перестаёт действовать (уменьшается её глубина), и частотные свойства схемы с ОБ приближаются к частотным свойствам схемы с ОЭ. Аналогичные явления наблюдаются в схеме (см. рис. 3.7) при уменьшении сопротивления R1.
Влияние ОС в схеме с ОБ сказывается также на зависимости входного сопротивления от частоты.
На низких частотах входное сопротивление оказывается существенно меньшим, чем в схеме с ОЭ (см. 3.25а). Максимальное снижение входного сопротивления достигается, если сопротивление нагрузки стремится к нулю.
С ростом частоты глубина ОС уменьшается из-за ухудшения усилительных свойств транзистора и входное сопротивление схемы растёт, стремясь к величине rб'
(рис. 3.10). Благодаря существованию отрицательной ОС нелинейные искажения в схеме с ОБ в общем случае оказываются меньшими, чем в схеме с ОЭ, что особенно заметно при увеличении внутреннего сопротивления источника сигнала R1 (см. рис. 3.6, кривая ОБ).
Уменьшение R1 приводит к снижению глубины параллельной по входу ОС, уровень нелинейных искажений возрастает и при R1 = 0 (ОС не действует) становится таким же, как и в схеме с ОЭ.