Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_materialovedeniyu.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
317.95 Кб
Скачать

30. Физика диэлектриков и их основные параметры.

Диэлектрики обладают свойством поляризоваться, и в них возможно длительное существование электростатического поля. Диэлектрик состоит из атомов и молекул, причем любой его бесконечно малый физический элемент объема является электрически нейтральным. Положительный заряд сосредоточен в ядрах атомов, а отрицательный - в электронных оболочках атомов и молекул.

Диэлектрики должны обладать не только достаточной электрической прочностью; они должны предупреждать возникновение токов утечки через изоляцию. По этой причине важными характеристиками диэлектриков являются их удельное объемное сопротивление и удельное поверхностное сопротивление. Диэлектрики выполняют свои изолирующие функции, пока напряжение устройства и, следовательно, напряженность электрического поля в диэлектрике данного устройства не превысят определенных значений. Если напряженность окажется больше некоторого критического значения, наступает пробой диэлектрика. Пробой различных ( твердых, жидких и газообразных) диэлектриков вызван различными явлениями. Однако во всех случаях проводимость и ток диэлектрика недопустимо возрастают и он теряет свои изолирующие свойства. Диэлектрики, или непроводники, представляют большой важный для практических целей класс веществ, применяющихся в электротехнике. Они служат для изоляции электрических цепей, а также для сообщения электрическим устройствам особых свойств, позволяющих более полно использовать объем и вес материалов, из которых они изготовлены. Диэлектрики могут иметь ионную или электронную проводимость, в зависимости от преобладания в них свободных ионов или электронов. Однако в большинстве случаев приходится считаться только с наличием ионной проводимости. Диэлектрики также поглощают энергию волн. Поле волны создает в молекулах диэлектриков смещение электронов - ток смещения. Токи смещения вызывают нагревание диэлектрика, на что расходуется энергия. Полупроводники объединяют в себе свойства проводников и диэлектриков. В них возникают и токи проводимости и токи смещения. Поэтому ионизированные слои атмосферы, являющиеся полупроводниками, заметно поглощают энергию проходящих волн. [

29. Магнитомягкие и магнитотвердые материалы. Их свойства, применение.

Магнитомягкие материалы имеют малое значение коэрцитивной силы Нс, поэтому способны намагничиваться до насыщения даже в слабых магнитных полях. Они обладают следующими свойствами:-узкая петля гистерезиса небольшой площади при высоких значениях индукции и небольшой коэрцитивной силой Нс<4 кА/м (см. рис. 6.3, а, б, в);- однородность структуры;- минимальные механические напряжения;- минимальное количество примесей и включений;- незначительная кристаллографическая анизотропия.

Магнитомягкие материалы с округлой петлей гистерезиса применяют для работы в низкочастотных магнитных полях. Магнитные материалы с прямоугольной петлей гистерезиса применяют для изготовления устройств магнитной памяти.

Магнитотвердые материалы имеют большие значения коэрцитивной силы Нс, трудно намагничиваются, но способны длительное время сохранять намагниченность. Они обладают широкой петлей гистерезиса с большой коэрцитивной слой Нс >4 кА/м (рис. 6.3, г) и наличием однодоменных структур, возникающих в небольших объемах магнитного вещества.

Магнитотвердые материалы служат для изготовления постоянных магнитов.

К магнитотвердым материалам относится магнитные материалы с широкой гистерезисной петлей и большой коэрцитивной силой Нс По составу и способу получения магнитотвердые материалы подразделяют на налитые, порошковые и прочие. Магнитотвердые литые материалы получают в результате дисперсионного твердения сплава при его охлаждении с определенной скоростью от температуры плавления до температуры начала распада. Порошковые магнитотвердые материалы применяют для изготов­ления миниатюрных постоянных магнитов сложной формы. Их подразделяют на металлокерамические, металлопластические, оксидные и микропорошковые.

Основными характеристиками магнитотвердых материалов являются коэрцитивная сила Нс, остаточная индукция Вс, максимальная удельная магнитная энергия, отдаваемая во внешнее пространство .

Магнитная проницаемость магнитотвердых материалов значительно меньше, чем у магнитомягких. Чем «тверже» магнитный материал, т. е. чем выше его коэрцитивная сила Нс, тем меньше его магнитная проницаемость.

По назначению магнитотвердые материалы подразделяют на материалы для постоянных магнитов и материалы для записи и хранения информации (звуковой, цифровой, видеоинформации и др.).

По составу и способу получения магнитотвердые материалы подразделяют на налитые, порошковые и прочие.

Основным видом потерь в магнитомягких материалах являются потери на вихревые токи, которые для листового образца про­порциональны квадрату частоты перемагничивания. Это явление связано с магнитным поверхностным эффектом, суть которого состоит в следующем. В магнитомягком материале магнитное поле вытесняется в поверхностные слои листа и магнитная индукция распределяется в сечении листа так, что центральная часть намагничивается слабее, чем поверхностные слои. При этом магнитная индукция снижается тем больше, чем выше частота перемагничивания.

Для уменьшения потерь на вихревые токи необходимо снижать толщину отдельных листов магнитного материала, так как при уменьшении толщины листа магнитный поверхностный эффект проявляется слабее;применять магнитные материалы с повышенным удельным электрическим сопротивлением, так как чем оно больше, тем на более высоких частотах можно использовать материал.

Магнитно-мягкие материалы, обладая высокой магнитной проницаемостью, небольшой коэрцитивной силой и малыми потерями на гистерезис, используются в качестве сердечников трансформаторов, электромагнитов, в измерительных приборах и в ряде других случаев, где необходимо при наименьшей затрате энергии достигнуть наибольшей индукции. Для уменьшения потерь на вихревые токи в трансформаторах используют магнитно-мягкие материалы с повышенным удельным электрическим сопротивлением, обычно применяя магнитопроводы, собранные из отдельных изолированных друг от друга тонких листов.

27-28. Магнитные материалы. Явление магнитного гистерезиса.

Все вещества в природе являются магнетиками в том понимании, что они обладают определенными магнитными свойствами и определенным образом взаимодействуют с внешним магнитным полем.

Магнитными называют материалы, применяемые в технике с учетом их магнитных свойств. Магнитные свойства вещества зависят от магнитных свойств микрочастиц, структуры атомов и молекул.

Магнитные материалы делят на слабомагнитные и сильномагнитные.

К слабомагнитным относят диамагнетики и парамагнетики. К сильномагнитным – ферромагнетики, которые, в свою очередь, могут быть магнитомягкими и магнитотвердыми. Формально отличие магнитных свойств материалов можно охарактеризовать относительной магнитной проницаемостью.

Диамагнетиками называют материалы, атомы (ионы) которых не обладают результирующим магнитным моментом. Внешне диамагнетики проявляют себя тем, что выталкиваются из магнитного поля. К ним относят цинк, медь, золото, ртуть и другие материалы.

Парамагнетиками называют материалы, атомы (ионы) которых обладают результирующим магнитным моментом, не зависящим от внешнего магнитного поля. Внешне парамагнетики проявляют себя тем, что втягиваются в неоднородное магнитное поле. К ним относят алюминий, платину, никель и другие материалы.

Ферромагнетиками называют материалы, в которых собственное (внутреннее) магнитное поле может в сотни и тысячи раз превышать вызвавшее его внешнее магнитное поле.

Любое ферромагнитное тело разбито на домены – малые области самопроизвольной (спонтанной) намагниченности. В отсутствие внешнего магнитного поля, направления векторов намагниченности различных доменов не совпадают, и результирующая намагниченность всего тела может быть равна нулю.

Существует три типа процессов намагничивания ферромагнетиков:

1. Процесс обратимого смещения магнитных доменов. В данном случае происходит смещение границ доменов, ориентированных наиболее близко к направлению внешнего поля. При снятии поля домены смещаются в обратном направлении. Область обратимого смещения доменов расположена начальном участке кривой намагничивания.

2. Процесс необратимого смещения магнитных доменов. В данном случае смещение границ между магнитными доменами не снимается при снижении магнитного поля. Исходные положения доменов могут быть достигнуты в процессе перемагничивания.

Необратимое смещение границ доменов приводит к появлению магнитного гистерезиса – отставанию магнитной индукции от напряженности поля .

3. Процессы вращения доменов. В данном случае завершение процессов смещения границ доменов приводит к техническому насыщению материала. В области насыщения все домены поворачиваются по направлению поля. Петля гистерезиса, достигающая области насыщения называется предельной.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]