
- •1.Загрязнение: понятие, классификация, последствия.
- •2.Загрязняющие вещества: понятие, виды, тяжесть воздействия.
- •Перечень загрязняющих веществ
- •Коды загрязняющих веществ
- •5.Виды физического загрязнения и его особенности.
- •6. Тепловое загрязнение: понятие, источники, последствия.
- •7. Шумовое загрязнение: понятие, источники, последствия.
- •Влияние на здоровье людей
- •Влияние на окружающую среду
- •8. Электромагнитное загрязнение: понятие, источники, последствия.
- •9. Радиоактивное излучение: альфа-, бета- и гамма-излучения, дозы излучени
- •Альфа-излучение
- •Защита организма от радиоактивного альфа-излучения
- •Бета-излучение
- •Защита организма от радиоактивного бета-излучения
- •Гамма-излучение
- •Защита организма от радиоактивного гамма-излучения
- •Дозы облучения
- •10. Источники радиоактивного загрязнения и вклад в облечение населения. Основные свойства, виды и источники радиоактивных излучений
- •Основные источники радиоактивного загрязнения окружающей среды
- •Энергетическая промышленность
- •Нестационарные источники загрязнения
- •Основные загрязняющие вещества
- •13. Химические загрязняющие вещества:
- •14. Промышленные предприятия как источник химического загрязнения.
- •Химическое загрязнение воды
- •Химическое загрязнение поверхностного слоя земли
- •15. Транспорт как источник химического загрязнения.
- •16. Сельское хозяйство как источник химического загрязнения.
- •17. Коммунальное хозяйство как источник химического загрязнения.
- •18. Тяжелые металлы и синтетические органические соединения.
- •Загрязнение тяжелыми металлами
- •Загрязнение океана
- •19. Промышленность как источник загрязнения атмосферы.
- •20. Транспорт как источник загрязнения атмосферы.
- •22. Глобальные последствия загрязнения атмосферы и меры по их предотвращению.
- •23. Меры и мероприятия по защите атмосферного воздуха от загрязнения. Способы очистки газообразных выбросов.
- •24. Источники загрязнения гидросферы.
- •25. Биологическое загрязнение гидросферы.
- •26. Химическое загрязнение гидросферы.
- •27. Физическое загрязнение гидросферы.
- •28. Меры и предприятия по защите водных источников от загрязнения, способы очистки сточных вод.
- •29. Источники загрязнения почв.
- •30. Основные загрязнители почв.
- •31. Меры и мероприятия по защите почв от загрязнения, способы очистки загрязненных почв.
- •32. Отходы производства и потребления как особый вид загрязнения.
- •Порядок сбора, накопления и хранения отходов
- •33. Способы ликвидации и переработки отходов производства и потребления.
- •34. Ликвидация и переработка твердых бытовых отходов.
- •35. Ликвидация и переработка твердых промышленных отходов.
- •36. Проблема обезвреживания и захоронения радиоактивных и диоксинсодержащих отходов, пути решения проблемы.
- •Обезвреживание и захоронение радиоактивных отходов
- •Обезвреживание и захоронение отходов содержащих диоксины
Основные источники радиоактивного загрязнения окружающей среды
В настоящее время основными источниками радиоактивного загрязнения окружающей среды являются:
урановая промышленность, которая занимается добычей, переработкой, обогащением и приготовлением ядерного топлива. Основным сырьем для этого топлива является уран-235. Аварийные ситуации могут возникнуть при изготовлении, хранении и транспортировке тепловыделяющих элементов (твэлов). Однако вероятность их незначительная;
ядерные реакторы разных типов, в активной зоне которых сосредоточены большие количества радиоактивных веществ;
радиохимическая промышленность, на предприятиях которой производится регенерация (переработка и восстановление) отработанного ядерного топлива. Они периодически сбрасывают сточные радиоактивные воды, хотя и в пределах допустимых концентраций, но тем не менее в окружающей среде неизбежно могут накапливаться радиоактивные загрязнения. Кроме того, некоторое количество радиоактивного газообразного йода (йод-131) все-таки попадает в атмосферу;
места переработки и захоронения радиоактивных отходов из-за случайных аварий, связанных с разрушением хранилищ, также могут явиться источниками загрязнения окружающей среды;
использование радионуклидов в народном хозяйстве в виде закрытых радиоактивных источников в промышленности, медицине, геологии, сельском хозяйстве и других отраслях. При нормальном хранении и использовании этих источников загрязнение окружающей среды маловероятно. Однако в последнее время появилась определенная опасность в связи с использованием радиоактивных источников в космических исследованиях и астронавтике. При запуске ракет-носителей, а также при посадке спутников и космических кораблей возможны аварийные ситуации. Так, при аварки Челенджера (США) сгорели радионуклидные источники тока, работающие на стронции-90. Также произошло загрязнение атмосферы над Индийским океаном в июне 1969 г., когда сгорел американский спутник, на котором генератор тока работал на плутонии-238. Тогда в атмосферу попали радионуклиды с активностью 17 тыс. кюри[3].
Вместе с тем наибольшее загрязнение окружающей среды все же создает сеть радиоизотопных лабораторий (которые имеются в очень многих странах мира), занимающихся использованием радионуклидов в открытом виде для научных и производственных целей. Сбросы радиоактивных отходов в сточные воды даже при концентрациях, меньше допустимых, с течением времени приведут к постепенному накоплению радионуклидов во внешней среде;
ядерные взрывы и возникающее после взрыва радиоактивное загрязнение местности (могут быть как локальные, так и глобальные выпадения радиоактивных осадков). Масштабы и уровни радиоактивных загрязнений при этом зависят от типа ядерных боеприпасов, вида взрывов, мощности заряда, топографических и метеорологических условий.
11. биологическое действе рации.
Фактор радиации присутствовал на нашей планете с момента ее образования, и как показали дальнейшие исследования, ионизирующие излучения наряду с другими явлениями физической, химической и биологической природы сопровождали развитие жизни на Земле. Однако, физическое действие радиации начало изучаться только в конце XIX столетия, а ее биологические эффекты на живые организмы — в середине XX. Ионизационные излучения относятся к тем физическим феноменам, которые не ощущаются нашими органами чувств, сотни специалистов, работая с радиацией, получили радиационные ожоги от больших доз облучения и умерли от злокачественных опухолей, вызванных переоблучением. Тем не менее, сегодня мировая наука знает 6 биологическом воздействии радиации больше, чем о действии любых других факторов физической и биологической природы в окружающей среде. При изучении действия радиации на живой организм были определены следующие особенности: · Действие ионизирующих излучений на организм не ощутимо человеком. У людей отсутствует орган чувств, который воспринимал бы ионизирующие излучения. Существует так называемый период мнимого благополучия — инкубационный период проявления действия ионизирующего излучения. Продолжительность его сокращается при облучении в больших дозах. · Действие от малых доз может суммироваться или накапливаться. · Излучение действует не только на данный живой организм, но и на его потомство — это так называемый генетический эффект. · Различные органы живого организма имеют свою чувствительность к облучению. При ежедневном воздействии дозы 0,002-0,005 Гр уже наступают изменения в крови. · Не каждый организм в целом одинаково воспринимает облучение. · Облучение зависит от частоты. Одноразовое облучение в большой дозе вызывает более глубокие последствия, чем фракционированное. Воздействие радиации на человека
Эффекты воздействия радиации на человека обычно делятся на две категории (рис. 10): 1) Соматические (телесные) - возникающие в организме человека, который подвергался облучению. 2) Генетические - связанные с повреждением генетического аппарата и проявляющиеся в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки человека, подвергшегося облучению.
Радиационные эффекты облучения человека |
|
Соматические эффекты |
Генетические эффекты |
Лучевая болезнь |
Генные мутации |
Локальные лучевые поражения |
Хромосомные аберрации |
Лейкозы |
|
Опухоли разных органов |
Рис. 10. Радиационные эффекты облучения человека.
Различают пороговые (детерминированные) и стохастические эффекты. Первые возникают когда число клеток, погибших в результате облучения, потерявших способность воспроизводства или нормального функционирования, достигает критического значения, при котором заметно нарушаются функции пораженных органов. Зависимость тяжести нарушения от величины дозы облучения показана в таблице 30.
Таблица 30.
Воздействие различных доз облучения на человеческий организм |
|
Доза, Гр |
Причина и результат воздействия |
(0.7 - 2) 10-3 |
Доза от естественных источников в год |
0.05 |
Предельно допустимая доза профессионального облучения в год |
0.1 |
Уровень удвоения вероятности генных мутаций |
0.25 |
Однократная доза оправданного риска в чрезвычайных обстоятельствах |
1.0 |
Доза возникновения острой лучевой болезни |
3- 5 |
Без лечения 50% облученных умирает в течение 1-2 месяцев вследствие нарушения деятельности клеток костного мозга |
10 - 50 |
Смерть наступает через 1-2 недели вследствие поражений главным образом желудочно кишечного тракта |
100 |
Смерть наступает через несколько часов или дней вследствие повреждения центральной нервной системы |
Хроническое облучение слабее действует на живой организм по сравнению с однократным облучением в той же дозе, что связано с постоянно идущими процессами восстановления радиационных повреждений. Считается, что примерно 90% радиационных повреждений восстанавливается. Стохастические (вероятностные) эффекты, такие как злокачественные новообразования, генетические нарушения, могут возникать при любых дозах облучения. С увеличением дозы повышается не тяжесть этих эффектов, а вероятность (риск) их появления. Для количественной оценки частоты возможных стохастических эффектов принята консервативная гипотеза о линейной беспороговой зависимости вероятности отдаленных последствий от дозы облучения с коэффициентом риска около 7 *10-2 /Зв. (Таблица 31).
Таблица 31.
Число случаев на 100 000 человек при индивидуальной дозе облучения 10 мЗв. |
||||
Категории облучаемых |
Смертельные случаи рака |
Несмертельные случаи рака |
Тяжелые наследуемые эффекты |
Суммарный эффект: |
Работающий персонал |
4.0 |
0.8 |
0.8 |
5.6 |
Все население * |
5.0 |
1.0 |
1.3 |
7.3 |
* Все население включает не только как правило здоровый работающий персонал, но и критические группы (дети, пожилые люди и т.д.)
Радионуклиды накапливаются в органах неравномерно. В процессе обмена веществ в организме человека они замещают атомы стабильных элементов в различных структурах клеток, биологически активных соединениях, что приводит к высоким локальным дозам. При распаде радионуклида образуются изотопы химических элементов, принадлежащие соседним группам периодической системы, что может привести к разрыву химических связей и перестройке молекул. Эффект радиационного воздействия может проявиться совсем не в том месте, которое подвергалось облучению. Превышение дозы радиации может привести к угнетению иммунной системы организма и сделать его восприимчивым к различным заболеваниям. При облучении повышается также вероятность появления злокачественных опухолей. В таблице 32 приведены сведения о накоплении некоторых радиоактивных элементов в организме человека. Организм при поступлении продуктов ядерного деления подвергается длительному, убывающему по интенсивности, облучению. Наиболее интенсивно облучаются органы, через которые поступили радионуклиды в организм (органы дыхания и пищеварения), а также щитовидная железа и печень. Дозы, поглощенные в них, на 1-3 порядка выше, чем в других органах и тканях. По способности концентрировать всосавшиеся продукты деления основные органы можно расположить в следующий ряд:
щитовидная железа > печень > скелет > мышцы.
Так, в щитовидной железе накапливается до 30% всосавшихся продуктов деления, преимущественно радиоизотопов йода.
Распространенными видами рака под действием радиации являются рак молочной железы и рак щитовидной железы. Обе эти разновидности рака излечимы и оценки ООН показывают, что в случае рака щитовидной железы летальный исход наблюдается у одного человека из тысячи, облученных при индивидуальной поглощенной дозе один Грей. Данные по генетическим последствиям облучения весьма неопределенны. Ионизирующее излучение может порождать жизнеспособные клетки, которые будут передавать то или иное изменение из поколения в поколение. Однако анализ этот затруднен, так как примерно 10% всех новорожденных имеют те или иные генетические дефекты и трудно выделить случаи, обусловленные действием радиации. Экспертные оценки показывают, что хроническое облучение при дозе 1 Грей, полученной в течение 30 лет, приводит к появлению около 2000 случаев генетических заболеваний на каждый миллион новорожденных среди детей тех, кто подвергался облучению. В последние десятилетия процессы взаимодействия ионизирующих излучений с тканями человеческого организма были детально исследованы. В результате выработаны нормы радиационной безопасности, отражающие действительную роль ионизирующих излучений с точки зрения их вреда для здоровья человека. При этом необходимо помнить, что норматив всегда является результатом компромиса между риском и выгодой.
12. характеристика химического загрязнения.
Химическое загрязнение — увеличение количества химических компонентов определённой среды, а также проникновение (введение) в неё химических веществ в концентрациях, превышающих норму или не свойственных ей. Наиболее опасно для природных экосистем и человека именно химическое загрязнение, поставляющее в окружающую среду различные токсиканты — аэрозоли, химические вещества, тяжелые металлы, пестициды, пластмассы, поверхностно-активные вещества и др. Стационарные источники
Химическая промышленность
Большинство органических полупродуктов и конечная продукция, применяемая или производимая в отраслях химической промышленности, изготавливается из ограниченного числа основных продуктов нефтехимии. При переработке сырой нефти или природного газа на различных стадиях процесса, например, перегонке, каталитическом крекинге, удалении серы и алкилировании, возникают как газообразные, так и растворенные в воде и сбрасываемые в канализацию отходы. К ним относятся остатки и отходы технологических процессов, не поддающиеся дальнейшей переработке. Эти отходы являются одним из основных источников химического загрязнения.
Газообразные выбросы установок перегонки и крекинга при переработке нефти в основном содержат углеводороды, моноксид углерода, сероводород, аммиак и оксиды азота. Та часть этих веществ, которую удается собрать в газоуловителях перед выходом в атмосферу, сжигается в факелах, в результате чего появляются продукты сгорания углеводородов, моноксид углерода, оксиды азота и диоксид серы. При сжигании кислотных продуктов алкилирования образуется фтороводород, поступающий в атмосферу. Также имеют место неконтролируемые эмиссии, вызванные различными утечками, недостатками в обслуживании оборудования, нарушениями технологического процесса, авариями, а также испарением газообразных веществ из технологической системы водоснабжения и из сточных вод.
Среди других загрязнителей биосферы доля окислов азота и свинца увеличивается постоянно. Ежегодный выброс этих соединений в атмосферу Земли достиг 50 млн.т.
Загрязнение окружающей среды свинцом и его соединениями предприятиями металлургической промышленности определяется спецификой их производственной деятельности: непосредственное производство свинца и его соединений, попутное извлечение свинца из других видов сырья, содержащих свинец в виде примеси; очистка получаемой продукции от примеси свинца и т. д. По данным ГосКомСтата России вклад различных отраслей промышленности в загрязнение атмосферного воздуха свинцом стационарными источниками оценивается, следующим образом:
цветная металлургия — 86,7 %
машиностроение и металлообработка — 8,8 %
черная металлургия — 8,8 %
химическая и нефтехимическая промышленность — 0,5 %
деревообрабатывающая и целлюлозно-бумажная промышленность — 0,3 %
транспортные предприятия, пищевая промышленность, промышленность строительных материалов, электроэнергетика и топливная промышленность — по 0,1 %
другие отрасли промышленности — около 1,8 %;