
- •1. Дійсні числа. Дії над дійсними числами
- •2. Об’єм кулі та її частин
- •1. Радіанне вимірювання кутів. Тригонометричні функції числового аргументу.
- •2. Об’єм циліндра і конуса
- •1. Комплексні числа. Дії над комплексними числами в алгебраїчній формі.
- •2. Поняття об’єму тіла. Об’єм призми, піраміди
- •1. Комплексні числа. Тригонометрична форма комплексного числа.
- •2. Взаємне розташування прямих. Ознака мимобіжності прямих.
- •Доведення
- •1. Квадратні рівняння з від’ємним дискримінантом
- •2. Конус. Осьовий переріз конуса. Переріз конуса площинами
- •1. Числова функція. Область визначення та множина значень
- •2. Піраміда. Види піраміди. Переріз піраміди площиною паралельною основі
- •1. Монотонність, обмеженість, парність, непарність, періодичність функцій
- •2. Многогранники. Паралелепіпед та його властивості.
- •1. Найпростіші перетворення графіків функцій
- •2. Поняття про статистику. Мода, медіана, середні значення.
- •1. Числові послідовності та їх класифікація
- •Способи задання числових послідовностей:
- •2. Перпендикулярність площин. Ознака перпендикулярності площин.
- •Доведення
- •1. Границя функції в точці. Основні властивості границь.
- •2. Циліндр. Осьовий переріз циліндра. Переріз циліндра площинами
- •2. Призма. Правильна призма. Площа бічної поверхні прямої призми.
- •2. Прямокутний паралелепіпед. Центральна симетрія паралелепіпеда.
- •1. Залежність між тригонометричними функціями одного і того самого аргументу.
- •2. Циліндр. Формули об’єму циліндра та площі повної поверхні циліндра
- •1. Тригонометричні функції подвійного аргументу
- •2. Декартові координати у просторі. Відстань між точками у просторі
- •Доведення
- •2. Правильна піраміда, Площа бічної поверхні правильної піраміди.
- •2. Конус. Формули об’єму конуса та площі повної поверхні конуса.
- •1. Корінь п –го степеня і його властивості.
- •2. Взаємне розміщення прямої і площини в просторі. Ознака паралельності прямої і площини
- •Доведення
- •1. Степенева функція з цілим показником, її графік і властивості
- •2. Взаємне розміщення двох площин у просторі. Ознака паралельності двох площин.
- •Доведення
- •1. Показникова функція, її графік і властивості.
- •2. Вектори у просторі. Дії над векторами. Множення вектора на число, його властивості.
- •1. Логарифм числа. Логарифм частки.
- •2. Перпендикулярність площин. Ознака перпендикулярності площин
- •Доведення
- •2. Куля. Переріз кулі площиною. Формули об’єму кулі та площі сфери.
- •1. Похідна функції. Похідна суми, добутку та частки двох функцій.
- •2. Перпендикулярність прямої і площини. Ознака перпендикулярності прямої і площини.
- •1. Похідна функції. Похідні показникової, логарифмічної та тригонометричних функцій.
- •2. Перпендикуляр і похила до площини. Теорема про три перпендикуляри.
- •1. Геометричний зміст похідної. Рівняння дотичної до графіка функції.
- •2. Паралелепіпед та його властивості.
- •Властивості :
- •1. Первісна. Основна властивість первісної.
- •Доведення
- •Доведення
- •2. Пряма і правильна призми. Площі бічної та повної поверхні призми.
- •1. Первісна. Правила знаходження первісних.
- •2. Циліндр. Осьовий переріз циліндра. Формули об’єму та повної поверхні циліндра
- •1. Загальна схема дослідження функції за допомогою похідної
- •2. Ознака колінеарності векторів
- •1. Визначений інтеграл, його геометричний зміст та властивості
- •2. Паралельне проектування та його властивості. Ортогональне проектування.
- •Відрізки зображаються відрізками;
- •Паралельні відрізки зображаються паралельними відрізками або відрізками однієї прямої;
- •3) Відношення довжин паралельних відрізків і відрізків однієї прямої зберігається.
- •1. Екстремуми функції. Дослідження функцій на екстремум.
- •2. Основні поняття теорії ймовірностей. Класичне означення ймовірностей
2. Куля. Переріз кулі площиною. Формули об’єму кулі та площі сфери.
Кулею називається тіло, утворене обертанням круга навколо його діаметра.
Сферою називається фігура, утворена обертанням кола навколо діаметра.
О — центр кулі (сфери);
ОА, ОВ — радіуси; АВ — діаметр
Сферою називається поверхня, яка складається з усіх точок простору, що розташовані на даній відстані (яка називається радіусом) від даної точки (яка називається центром).
Кулею називається тіло, що складається з усіх точок простору, які розташовані від даної точки на відстані, не більшій за дану. Ця точка називається центром кулі, а дана відстань — радіусом кулі.
Площина, яка проходить через центр кулі (сфери), називається діаметральною площиною. Переріз кулі (сфери) діаметральною площиною називається великим кругом (великим колом).
Отже, якщо радіус сфери — R (рис. 280), то її площа: S = 4πR2.
Об'єм
кулі
обчислюється за формулою V =
πR3.
Білет № 23
Похідна функції. Похідна суми, добутку та частки двох функцій.
Перпендикулярність прямої і площини. Ознака перпендикулярності прямої і площини.
Розв’яжіть нерівність: lg2 100x – 5 lg x
6.
Основа прямої призми – прямокутний трикутник з катетом 6 см і гострим кутом 450. Об’єм призми дорівнює 108 см3. Знайдіть площу повної поверхні призми.
1. Похідна функції. Похідна суми, добутку та частки двох функцій.
Похідною функції у = f(x) в точці хо називається границя відношення приросту функції до приросту аргументу при умові, що приріст аргументу прямує до нуля, а границя існує, тобто
.
2. Перпендикулярність прямої і площини. Ознака перпендикулярності прямої і площини.
Пряма називається перпендикулярною до площини, якщо вона перетинає цю площину та перпендикулярна до будь-якої прямої, що лежить у цій площині й проходить через точку перетину.
Теорема (ознака перпендикулярності прямої і площини)
Якщо пряма перпендикулярна до двох прямих, які лежать у площині й перетинаються, то вона перпендикулярна до даної площини.
Дано: a с, a b, b α, с α;
а, b, с перетинаються в точці А; х α .
Довести: а х (рис. 139).
Білет № 24
Похідна функції. Похідні показникової, логарифмічної та тригонометричних функцій.
Перпендикуляр і похила до площини. Теорема про три перпендикуляри.
Спростіть вираз: sin 200 cos700 + sin2 1100 cos2 2500 + sin2 2900 cos2 3400.
Кут між площинами трикутників АВС і АВD дорівнюють 450. Трикутник АВС – рівносторонній зі стороною 4 см, трикутник АВD – рівнобедрений. АD =BD =
см. Знайдіть довжину відрізка СD.