
- •1. Дійсні числа. Дії над дійсними числами
- •2. Об’єм кулі та її частин
- •1. Радіанне вимірювання кутів. Тригонометричні функції числового аргументу.
- •2. Об’єм циліндра і конуса
- •1. Комплексні числа. Дії над комплексними числами в алгебраїчній формі.
- •2. Поняття об’єму тіла. Об’єм призми, піраміди
- •1. Комплексні числа. Тригонометрична форма комплексного числа.
- •2. Взаємне розташування прямих. Ознака мимобіжності прямих.
- •Доведення
- •1. Квадратні рівняння з від’ємним дискримінантом
- •2. Конус. Осьовий переріз конуса. Переріз конуса площинами
- •1. Числова функція. Область визначення та множина значень
- •2. Піраміда. Види піраміди. Переріз піраміди площиною паралельною основі
- •1. Монотонність, обмеженість, парність, непарність, періодичність функцій
- •2. Многогранники. Паралелепіпед та його властивості.
- •1. Найпростіші перетворення графіків функцій
- •2. Поняття про статистику. Мода, медіана, середні значення.
- •1. Числові послідовності та їх класифікація
- •Способи задання числових послідовностей:
- •2. Перпендикулярність площин. Ознака перпендикулярності площин.
- •Доведення
- •1. Границя функції в точці. Основні властивості границь.
- •2. Циліндр. Осьовий переріз циліндра. Переріз циліндра площинами
- •2. Призма. Правильна призма. Площа бічної поверхні прямої призми.
- •2. Прямокутний паралелепіпед. Центральна симетрія паралелепіпеда.
- •1. Залежність між тригонометричними функціями одного і того самого аргументу.
- •2. Циліндр. Формули об’єму циліндра та площі повної поверхні циліндра
- •1. Тригонометричні функції подвійного аргументу
- •2. Декартові координати у просторі. Відстань між точками у просторі
- •Доведення
- •2. Правильна піраміда, Площа бічної поверхні правильної піраміди.
- •2. Конус. Формули об’єму конуса та площі повної поверхні конуса.
- •1. Корінь п –го степеня і його властивості.
- •2. Взаємне розміщення прямої і площини в просторі. Ознака паралельності прямої і площини
- •Доведення
- •1. Степенева функція з цілим показником, її графік і властивості
- •2. Взаємне розміщення двох площин у просторі. Ознака паралельності двох площин.
- •Доведення
- •1. Показникова функція, її графік і властивості.
- •2. Вектори у просторі. Дії над векторами. Множення вектора на число, його властивості.
- •1. Логарифм числа. Логарифм частки.
- •2. Перпендикулярність площин. Ознака перпендикулярності площин
- •Доведення
- •2. Куля. Переріз кулі площиною. Формули об’єму кулі та площі сфери.
- •1. Похідна функції. Похідна суми, добутку та частки двох функцій.
- •2. Перпендикулярність прямої і площини. Ознака перпендикулярності прямої і площини.
- •1. Похідна функції. Похідні показникової, логарифмічної та тригонометричних функцій.
- •2. Перпендикуляр і похила до площини. Теорема про три перпендикуляри.
- •1. Геометричний зміст похідної. Рівняння дотичної до графіка функції.
- •2. Паралелепіпед та його властивості.
- •Властивості :
- •1. Первісна. Основна властивість первісної.
- •Доведення
- •Доведення
- •2. Пряма і правильна призми. Площі бічної та повної поверхні призми.
- •1. Первісна. Правила знаходження первісних.
- •2. Циліндр. Осьовий переріз циліндра. Формули об’єму та повної поверхні циліндра
- •1. Загальна схема дослідження функції за допомогою похідної
- •2. Ознака колінеарності векторів
- •1. Визначений інтеграл, його геометричний зміст та властивості
- •2. Паралельне проектування та його властивості. Ортогональне проектування.
- •Відрізки зображаються відрізками;
- •Паралельні відрізки зображаються паралельними відрізками або відрізками однієї прямої;
- •3) Відношення довжин паралельних відрізків і відрізків однієї прямої зберігається.
- •1. Екстремуми функції. Дослідження функцій на екстремум.
- •2. Основні поняття теорії ймовірностей. Класичне означення ймовірностей
2. Конус. Формули об’єму конуса та площі повної поверхні конуса.
Прямим круговим конусом називається тіло, утворене обертанням плоского прямокутного трикутника навколо одного із його катетів.
Якщо прямокутний трикутник SАО обертається навколо катета SO, то його гіпотенуза описує бічну поверхню, а катет ОА — круг — основу конуса. Радіус цього круга називається радіусом конуса; точка S, відрізок SА, відрізок SO, пряма SO називаються відповідно вершиною, твірною, висотою і віссю конуса.
П
лоща
поверхні та об'єм конуса
Бічну поверхню конуса можна розгорнути на площину, розрізавши її по твірній (рис. 273).
Розгорткою бічної поверхні конуса є круговий сектор, радіус якого дорівнює твірній конуса, а довжина дуги сектора — довжині кола основи конуса (рис. 274).
Площею бічної поверхні конуса будемо вважати площу її розгортки.
Таким чином, площа бічної поверхні конуса дорівнює добутку половини довжини кола основи на твірну: Sбічн = πRl.
Площею повної поверхні конуса називається сума площ бічної поверхні та основи. Для обчислення площі повної поверхні конуса Sкон одержуємо:
Sкон = Sбічн + Sосн, Sкон = πRl + πR2 = πR(l + R).
Об'єм конуса дорівнює третині добутку площі його основи на висоту:
V
=
πR2H
.
Білет № 18
Корінь п –го степеня і його властивості.
Взаємне розміщення прямої і площини в просторі. Ознака паралельності прямої і площини.
Знайдіть похідну функції f (x) = log4 (x2 – 4x) та обчисліть її значення в точці х0 = 5.
Паралельно осі циліндра проведено переріз, який відтинає від кола основи дугу, градусна міра якої дорівнює 1200. Площа перерізу дорівнює 16
см2, а його діагональ утворює з площиною основи кут 600. Знайдіть площу бічної поверхні циліндра.
1. Корінь п –го степеня і його властивості.
Коренем п-го степеня із дійсного числа а називається число, n-й степінь якого дорівнює а.
Згідно даного означення, корінь п-го степеня — це корінь рівняння хn = а. Число коренів цього рівняння залежить від п і а.
Якщо п — парне, тобто п = 2k, k N, то рівняння х2k = а має два корені, якщо а > 0; один корінь, якщо а = 0; не має коренів, якщо а < 0.
Якщо п — непарне, тобто п = 2k + 1, k N, то рівняння х2k+1 = а завжди має лише один корінь.
Арифметичним коренем n-го степеня із невід'ємного числа а називається таке невід'ємне число, n-й степінь якого дорівнює а.
Арифметичний
корінь п-го
степеня із числа а
позначають так:
.
Число n
називають показником кореня, число а
—
підкореневим числом (виразом).
Якщо
п
= 2, то замість
пишуть
і називають арифметичним квадратним
коренем.
Арифметичний корінь третього степеня називають кубічним коренем.
Властивості:
·
=
.
.
.
.
.
2. Взаємне розміщення прямої і площини в просторі. Ознака паралельності прямої і площини
Взаємне розміщення прямої і площини |
||
паралельні a || α |
п |
пряма лежить у площині |





Т
еорема
(ознака
паралельності прямої і площини)
Якщо пряма, яка не належить площині, паралельна якій-небудь прямій у цій площині, то вона паралельна і самій площині.
Дано: а || b; b α (рис. 51).
Довести: а || .