
- •3. Доказательства роли днк в передаче наследственной информации. Опыты Херши и Чейза.
- •4.Структура нуклеиновых кислот, Нуклеотиды их разновидности.
- •5.Простанственная конфигурация молекулы днк. Модель Уотсона и Крика. В и z формы днк.
- •6. Способы репликации днк - консервативный, полуконсервативный, дисперсионный. Опыты Мезильстона и Сталя.
- •7 Опыты Мезильстона и Сталя.
- •8.Направление репликации днк. Образование репликативной вилки. Точка ori.
- •9. Инициация репликации. Факторы инициации. Ферменты репликации.?????
- •10 Элонгация репликации. Днк-топоизомераза, днк- затравка, днк- полимераза.
- •11.Элонгация репликации. Лидирующая и отстающая цепи. Фрагменты Оказаки. Рнк-затравка.
- •12.Транскрипция днк у прокариот. Кодирующая и антикодирующая цепи.
- •14.Инициация транскрипции. Промотор, стартовая точка сигма-фактор.
- •15.Элонгация и терминация транскрипции.
- •16.Гетерогенная ядерная днк. Процессинг .Сплайсинг.
- •18.Транспортная рнк. Строение функции, Строение рибосом.
- •19 Синтез полипептидной молекулы. Инициация и элонгация.
- •20Регуляция активности генов на примере лактозного оперона.
- •21.Регуляция активности генов на примере триптофанового оперона
- •22.Негативный и позитивный контроль генетической активности
- •23Строение хромосом. Кариотип. Идиограмма. Модели строения хромосом.
- •24.Гистоны. Структура нуклеосом.
- •25.Уровни упаковки хромасом эукариот. Конденсация хроматина.
- •26.Приготовление хромосомных препаратов. Использование колхицина. Гипотония, фиксация и окрашивание
- •27 Характеристика хромосомного набора человека. Денверовская номенклатура.
- •28.Диференциальное окрашивание хромосом. Применение этого метода.
- •29.Механизмы репарации днк. Фотореактивация. Экспазиционная репарация
- •30. Хромосомные болезни, их общая характеристика. Моносомии, Трисомии, нуклисомии
- •3Синдромы обусловленные внутрехромосомными измен.
- •XX и xy определение пола
- •60. Особенности определения пола у дрозофил
- •61. Особенности определения пола у человека
- •63. Сцепленное наследование
- •64. Признаки, обусловленные полом и сцепленные с полом(тут по лекциям)
- •65. Т. Морган и генетическое картирование хромосом?????
- •66. Гаметогенез
- •67. Отличительные особенности митоза и мейоза (тут так расписала, можете изменить если хотите)
- •68. Овогенез. Цитологические и цитогенетические характеристики?????
- •69. Хромосомная теория наследственности. Полное и неполное сцепление генов????
- •70. Генетическая структура популяций. Популяция. Дем. Изолят. Механические нарушения равновесия генов в популяции?????
- •71. Закон Харди-Вайнберга, его значение?????
- •72. Генетический груз, его биологическая сущность. Генетический полиморфизм
- •73. Виды изменчивости
- •74. Модификационная изменчивость
- •75. Комбинативная изменчивость
- •76. Мутационная изменчивость
- •77. Полиплоидия. Аллополиплоидия и автополиплоидия у растений
- •78. Понятие пенетрантность, экспрессивность, норма реакции, дискордантность и конкордантность (примеры)
- •79. Миссенс, сейсменс, нонсенс мутации. Трансверсии, транзиции
- •80. Химические мутагены
- •81. Физические мутагены
- •82. Отбор в пользу гетерозигот и гомозигот (примеры)
- •83. Генеалогический метод в генетике
- •84. Генетика популяций
- •85. Хромосомные мутации
- •86. Геномные мутации
- •87. Мигрирующие генетические элементы. Опыты б. МакКлинток на кукурузе
- •88. Гипо, гипер, нео, анти аморфные мутации
- •89. Робертсоновские центрические транслокации и инверсии. Их роль в эволюции кариотипа
- •90. Селекция. Вклад в науку н.И.Вавилова
71. Закон Харди-Вайнберга, его значение?????
Законом Харди-Вайнберга наз-ют: в бесконечно большой популяции диплоидных организмов, наследование в которой определяется одним аутосомным диаллельным локусом, осуществляется случайное скрещивание (панмиксии), при отсутствии мутаций, отбора и миграции частоты генов остаются неизменными из поколения в поколение, при этом частоты генотипов связаны с частотами генов простыми соотношениями:
частота гомозигот АА — О = р2
частота гетерозиготна Аа— Н = 2pq;
частота гомозигот аа — R = q2.
Случайным скрещиванием, или панмиксией, называют такую систему скрещиваний в популяции, при которой вероятность формирования брачной пары не зависит от генотипов особей. Следовательно, в случайно скрещивающейся популяции частота спариваний особей тех или иных генотипов равна произведению частот, с которыми эти генотипы представлены в популяции. Например, если у самок и самцов частоты D, H и R одинаковы, частота образования пары жен АА х муж АА равна D2, частота пары жен Аа х муж аа равна H х R. Справедливость закона Харди—Вайнберга легко доказать. Пусть частоты аллелей у самок и самцов в исходном поколении одинаковы и равны р для аллеля А и q для аллеля а. При случайном скрещивании вероятности образования зигот равны произведению частот соответствующих гамет самок и самцов. Тогда, в следующем поколении потомков с генотипом АА будет р2, потомков с генотипом аа – q2, потомков с генотипом Аа — 2pq (т.к. слияние женской гаметы А с мужской а дает pq гетерозигот и слияние женской гаметы а с мужской А дает также pq гетерозигот). Вычисляем частоты аллелей А и а в этом поколении. Частота аллеля А равна р1 + pq— р(р +q)=p (напомним, что р + q = 1). Частота аллеля а равна q2 + pq= q(p + q)=q Итак, частоты аллелей в следующем поколении оказались равными частотам в исходном поколении, и, значит, частоты генотипов во втором поколении окажутся такими же, как в предыдущем.
Из закона Харди—Вайнберга следует следующий вывод: если частоты аллелей у самцов и самок одинаковы, то при любом исходном соотношении частот генотипов равновесные частоты генотипов в каждом локусе достигаются за одно поколение. Если частоты аллелей у представителей разного пола исходно различны, то для ауто- сомных локусов они становятся одинаковыми в следующем поколении, поскольку и самцы и самки получают половину своих генов от отца и половину — от матери. Следовательно, в этом случае равновесные частоты генотипов достигаются за два поколения. В случае сцепленных с полом локусов равновесные частоты достигаются лишь постепенно.
Закон Харди—Вайнберга описывает поведение системы во времени при указанных выше условиях, т.е. при соблюдении всех перечисленных условий будут наблюдаться соответствующие соотношения частот аллелей и генотипов. Обратное утверждение не верно, поэтому неправомочно делать вывод о свойствах системы (монотонное наследование, отсутствие отбора и.т.д.), если в данный момент мы обнаружили в популяции соотношение трех фенотипов близкое p2:2pq:q2. Известны примеры, когда соотношение Харди-Вайнберга обнаруживается на ограниченных выборках в каждом поколении в условиях сильного давления отбора и снижения частоты одного из аллелей. Однако отклонение от соотношения Харди—Вайнберга всегда свидетельствует о некоторых процессах, происходящих в популяции.
Значение :
В медицинской генетике закон Харди — Вайнберга позволяет оценить популяционный риск генетически обусловленных заболеваний, поскольку каждая популяция обладает собственным аллелофондом и, соответственно, разными частотами неблагоприятных аллелей. Зная частоты рождения детей с наследственными заболеваниями, можно рассчитать структуру аллелофонда. В то же время, зная частоты неблагоприятных аллелей, можно предсказать риск рождения больного ребёнка.
В селекции — позволяет выявить генетический потенциал исходного материала (природных популяций, а также сортов и пород народной селекции), поскольку разные сорта и породы характеризуются собственными аллелофондами, которые могут быть рассчитаны с помощью закона Харди — Вайнберга. Если в исходном материале выявлена высокая частота требуемого аллеля, то можно ожидать быстрого получения желаемого результата при отборе. Если же частота требуемого аллеля низка, то нужно или искать другой исходный материал, или вводить требуемый аллель из других популяций (сортов и пород).