Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 2.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
165.27 Кб
Скачать

2.1.3. Линейное пространство сигналов

Метрическое пространство является линейным, если в нём определены операции сложения векторов и умножения вектора на скаляр, в результате которых образуется новый вектор в том же пространстве. Множество сигналов L образует линейное пространство сигналов, если для него справедливы следующие аксиомы

  1. Множество содержит такой нулевой элемент , что для всех сигналов u(t)  L выполняется равенство u(t) +  = u(t).

  2. Для любых сигналов u(t)  L и v(t)  L существует их сумма s(t) = u(t)+v(t), которая также содержится в L. При этом операция суммирования должна быть

- коммутативна: u(t)+v(t) = v(t)+u(t),

- ассоциативна: u(t)+(v(t)+x(t)) = (u(t)+v(t))+x(t),

- однородна: u(t) + (-u(t)) = .

  1. Существует множество скалярных элементов , на которые может выполняться умножение любого сигнала s(t)  L, при этом результат умножения является новым сигналом y(t) = s(t) в том же пространстве, у(t)  L. Операция умножения должна быть

- ассоциативна: ·s(t)) = ·s(t),

- дистрибутивна: (u(t)+s(t)) = u(t)+s(t), ()s(t) = s(t)+s(t),

- пропорциональна: 1·s(t) = s(t), 0·s(t) = 0.

Пример. Множество сигналов L состоит из импульсных сигналов произвольной формы с амплитудой не более 10 вольт. Образуют ли эти сигналы линейное пространство?

Нет, не образуют, так как не выполняется, по крайней мере, вторая аксиома линейного пространства (сумма двух сигналов с амплитудой более 5 вольт превышает 10 вольт). Требуются дополнительные структурные ограничения по параметрам сигналов.

Сигналы могут описываться как вещественными, так и комплексными функциями, и линейные пространства также могут быть вещественными или комплексными. Скалярные множества обычно отождествляются с множествами действительных или комплексных чисел, но на них также могут накладываться определенные ограничения. Так, например, в теории связи широко применяется бинарное скалярное множество {0, 1}.

Множество L, для которого выполняются приведенные выше аксиомы, при анализе сигналов и систем может рассматриваться как специальным образом сконструированное многомерное (в пределе – бесконечномерное) геометрическое пространство. Рассмотрим это на конкретном примере.

Имеем произвольный сигнал s(t), заданный на интервале [a, b]. Дискретизируем сигнал с равномерным шагом дискретизации и переведем в цифровую форму (представим сигнал N последовательными выборками):

s = (s1, s2, … , sN).

В таком отображении величина s может рассматриваться в виде N-мерного вектора в N-мерном пространстве, в котором значения sn представляют собой проекции s-вектора на координатные оси данного пространства. Двумерный вектор в двумерном пространстве – это точка с координатами s1 и s2 на рис. 2.1. Соответственно, в трехмерном пространстве сигнал s представлен точкой в трехмерном пространстве. Представить себе N-мерное пространство при N>3 можно только абстрактно, но с математических позиций такое пространство вполне реально и N-мерный сигнал s отображается вполне определенной точкой в этом пространстве с координатами sn по осям пространства. При уменьшении интервала дискретизации сигнала до бесконечно малой величины значение N стремится к бесконечности, и пространство сигналов превращается в бесконечномерное пространство аналоговых сигналов. Следовательно, и аналоговые сигналы могут рассматриваться как предельный случай бесконечномерных векторов.

Рис. 2.1. Пространства сигналов и функций

С учетом вышеизложенного, для математического анализа систем и сигналов в линейном пространстве может использоваться математика векторов.

В линейном пространстве L{un; n=0,1,2,…,N} всегда можно выделить множество векторов {xn; n=0,1,2,…,N}, для которых выполняется равенство нулю их линейной комбинации

n xn = 0 (2.1)

только при условии равенства нулю всех значений k.

Такое множество векторов называется линейно независимым. Ни один вектор линейно независимого множества не может быть выражен в виде какой-либо линейной комбинации других векторов этого пространства. Такое множество векторов называется базисом N-мерного пространства L{un; N}. Линейная комбинация таких линейно независимых векторов образует векторное пространство где каждый вектор U может быть выражен единственной линейной комбинацией векторов xn:

U =n xn

Совокупность чисел {n} называется спектром вектора U в этом базисе. Спектр вектора в общем случае может быть комплексным.

Линейные пространства сигналов имеют, как правило, не единственный базис. Выбор базиса определяется простотой и удобством его использования при обработке сигналов.

Пример. Имеем множество сигналов в виде числовых последовательностей, каждая из которых состоит из N чисел (N-мерные вектор-строки). Для сигналов задано скалярное пространство чисел R = {, 0 ≤  ≤ 10}. При этом пространство сигналов N-мерно и может быть определено линейной комбинацией:

L = {y; y = n xn, 0 ≤  ≤ 10, xn – базис пространства}.

x0 = {1,0,0,0,…,0},

x1= {0,1,0,0,…,0},

x2= {0,0,1,0,…,0},

………………….

xN= {0,0,0,0,…,1},

Любой сигнал в этом пространстве определен точкой с N - координатами в базисе xn.

Основными метрическими параметрами линейного пространства являются норма, метрика и скалярное произведение сигналов.