
- •Пространство сигналов
- •2.1. Пространство сигналов
- •2.1.1. Множества сигналов
- •2.1.2. Пространство сигналов
- •2.1.3. Линейное пространство сигналов
- •2.1.4. Норма сигналов
- •2.1.5. Метрика сигналов
- •2.1.6. Скалярное произведение произвольных сигналов
- •2.1.7. Корреляция сигналов
- •2.2. Мощность и энергия сигналов
- •2.3. Пространства функций
- •2.4. Функции корреляции сигналов
- •2.5. Математическое описание шумов и помех
Лекции 2-3
Пространство сигналов
2.1. Пространство сигналов
Важнейшее свойство аналоговых и дискретных сигналов заключается в том, что их линейные комбинации также являются аналоговыми или дискретными сигналами. Линейные комбинации цифровых сигналов, в силу их ограничения по разрядности, в принципе относятся к разряду нелинейных операций, однако последним фактором можно пренебречь, если ошибки, которые вносятся в результаты наблюдений при квантовании отсчетов, достаточно малы по сравнению с шумами зарегистрированной информации. При дискретизации и квантовании данных непосредственно на входах в ЭВМ это условие выполняется практически всегда, поскольку ошибки определяются разрядностью ЭВМ и программными системами обработки данных, которые обычно не ниже 6-12 десятичных разрядов.
2.1.1. Множества сигналов
Сигналы обычно рассматриваются в составе определенных множеств L, объединенных каким-либо свойством Р, характерным для всех и каждого из сигналов данного множества. Условное отображение множества: L = {s; P} – множество всех s, для которых справедливо свойство Р. Определив свойство Р, мы тем самым можем ограничивать сигналы, действующие в каких-либо системах, определенными типами, условиями, границами по параметрам и т.п.
Пример 1. Множество гармонических сигналов.
L = {s; s(t)} = A·cos (t+), - < t < }.
Множество содержит гармонические сигналы с произвольными значениями амплитуд, частот и фаз.
Пример 2. Множество периодических сигналов.
L(Т) = {s; s(t) = s(t+kT), - < t < , k I}.
Пример 3. Множество сигналов, ограниченных по амплитуде и длительности.
L(K,T) = {s; |s(t)| ≤ K, s(t)=0 при |t| > T}.
Множества сигналов могут образовываться из других, ранее определенных множеств, логическими операциями объединения (индекс - ) и пересечения (индекс - ):
L = S1 S2 = {s; s S1 или s S2},
L = S1 S2 = {s; s S1 и s S2}.
Возможно разбиение множества сигналов на непересекающиеся подмножества, более удобные для обработки, при этом для множества S, разбитого на совокупность подмножеств {S1, S2, S3, …, SN}, должны выполняться условия:
S = S1 S2 S3 … SN,
Sn Sm = для n ≠ m.
Запись S1 S означает, что множество S1 входит в состав множества S, т.е. является подмножеством в составе S.
Преобразование элементов vi множества V в элементы gi множества G называется отображением (трансформацией, преобразованием) V в G. Символьные записи преобразования: g = T[v] или v → g, при этом элементы v называют прообразом множества g, а элементы g – образом множества v.
Если преобразование выполняется над числами одного множества R (например, x = T[y]), то такое преобразование порождает функциональную зависимость x = f(y).
Если преобразование выполняется над функциями одного и того же множества L (например, f(t) = T[g(t)], f(t) L и g(t) L), то алгоритм преобразования T[..] называют оператором преобразования f(t) в g(t).
Преобразование g = T[f(t)] функций f(t) множества F называют функционалом, если результатом преобразования являются числовые значения g множества G. Примерами функционалов являются интегралы функций в определенных пределах.
Преобразование может выполняться функциональными операторами с переводом функций одной переменной, например t, в функции по другой переменной, например , Типичным примером функционального оператора является преобразование Фурье. В комплексной форме:
S()
=
s(t)
exp(-jt)
dt.