
- •1. Экономико-математическая модель (эмм). Понятие, пример, общая классификация эмм
- •2. Общая задача линейного программирования, основные элементы и понятия
- •3. Общая запись оптимизационной эмм (задача оптимального программирования). Основные элементы и понятия
- •4. Графический метод решения задачи линейного программирования
- •5. Особые случаи решения злп графическим методом
- •6. Каноническая форма записи злп. Способы приведения злп к каноническому виду
- •7. Экономический смысл основных и дополнительных переменных в канонической форме задачи об оптимальном использовании ограниченных ресурсов
- •8. Решение систем линейных уравнений методом Жордана - Гаусса. Общее решение, частное, базисные и опорные решения слу
- •9. Основные свойства задачи линейного программирования. Основы симплекс-метода: общая схема алгоритма метода
- •10. Алгоритм симплексного метода с естественным базисом
- •11. Алгоритм симплексного метода с искусственным базисом
- •12. Особые случаи решения злп симплексным методом
- •13. Правило построения двойственной задачи, математическая запись. Теоремы двойственности и их использование для анализа оптимальных решений
- •14. Экономический смысл задачи, двойственной к задаче оптимального использования ресурсов
- •15. Экономическая интерпретация злп: задача об оптимальном использовании ограниченных ресурсов, двойственная задача и ее экономическое содержание
- •16. Двойственные оценки в злп, интервалы устойчивости двойственных оценок. Свойства двойственных оценок и их использование для анализа оптимальных решений
- •17. Двойственные оценки как мера влияния ограничений на целевую функцию
- •18. Постановка и экономико-математическая модель открытой транспортной задачи
- •19. Постановка и экономико-математическая модель закрытой транспортной задачи
- •20. Задача о назначениях, постановка и экономико-математическая модель
- •21. Задачи дискретной (целочисленной) оптимизации, пример
- •22. Экономико-математическая модель межотраслевого стоимостного баланса (модель Леонтьева)
- •23. Коэффициенты прямых и полных материальных затрат, связь между ними, методы расчета
- •24. Матрица прямых материальных затрат, ее продуктивность. Признаки продуктивности
- •25. Определение объемов валовой и конечной продукции по модели Леонтьева
- •26. Матрица коэффициентов полных материальных затрат, способы ее определения
- •27. Структура временных рядов экономических показателей
- •28. Требования, предъявляемые к исходной информации при моделировании экономических процессов на основе временных рядов
- •29. Основные этапы построения моделей экономического прогнозирования
- •30. Выявление и устранение аномальных наблюдений во временных рядах
- •31. Предварительный анализ временных рядов. Проверка наличия тренда
- •32. Предварительный анализ временных рядов. Сглаживание временных рядов
- •33. Предварительный анализ временных рядов. Вычисление количественных характеристик развития экономических процессов
- •34. Построение моделей кривых роста. Оценка параметров кривых роста с помощью метода наименьших квадратов (мнк)
- •35. Временной ряд, тренд, трендовая модель. Получение трендовой модели средствами Excel
- •36. Оценка качества моделей прогнозирования. Проверка адекватности и оценка точности
- •37. Оценка адекватности модели кривой роста
- •38. Оценка точности моделей кривой роста, выбор наилучшей кривой роста
- •39. Прогнозирование на основе кривой роста
- •40. Производственные функции: понятие, общая классификация и формальные свойства
- •41. Назначение и область применения сетевых моделей. Основные элементы сетевой модели
- •42. Имитационное моделирование, основные понятия и примеры применения
- •43. Основные понятия теории игр, игры с природой
- •44. Основные понятия о системах массового обслуживания, примеры их применения
17. Двойственные оценки как мера влияния ограничений на целевую функцию
1. Двойственная оценка показывает, как изменится значение цф при изменении объема ресурса на единицу (обозн величину предельного продукта) 2. д о как мера дефицитности ресурса; дефицитным явл ресурс, кот имеет отличную от нуля двойственную оценку, дефицитный ресурс ограничивает дальнейшее увеличение цф (экономич результата) 3. Как предельная цена ресурса 4. Позволяют сопоставить ценность ресурсов, и определяет пропорции их взаимозаменяемости.
18. Постановка и экономико-математическая модель открытой транспортной задачи
Транспортная задача явл разновидностью ЗЛП. Чаще всего эта задача позволяет оптимизировать грузоперевозки. В общем виде такую задачу можно сформулировать: имеется ряд поставщиков однородной продукции, имеется ряд потребителей продукции, известны объемы поставок продукции и спрос на эту продукцию и затраты на перевозку единицы продукции от каждого поставщика к каждому потребителю. Требуется определить такой вариант грузоперевозок, чтобы суммарные транспортные затраты были min. Имеется m пунктов производства однородного продукта с объемами производства A1,A2,…,Am. Имеется n пунктов потребления этого продукта с объемами потребления b1,b2,…,bn. Известны оценки С= (Cij) M*N транспортных затрат на перевозку единицы груза от i-того поставщика к j-тому потребителю (по коммуникации от i к j). Надо так прикрепить потребителей к поставщикам, чтобы минимизировать суммарные транспортные затраты на перевозку груза. ЭММ ТЗ: Обозначим через Xij, i=1,m j=1,n объемы перевозок по коммуникации i→j, т.е. в рассмотрение вводится матрица X=(Xij)m*n. ; Min ∑ ∑ Cij Xij; ∑ Xij = Ai, i=1,m ; ∑ Xij = Bj, j=1,n. Если не выполняются условия баланса между спросом и предложением ∑Ai = ∑Bj, то ТЗ называется открытой, при этом могут быть 2 случая. 1 случай: ∑Ai > ∑Bj, тогда ограничения имеют вид ∑ Xij ≤ Ai, i=1,m. 2 случай: ∑Ai < ∑Bj. Тогда ограничения имеют вид ∑ Xij ≤ Bj, j=1,n
19. Постановка и экономико-математическая модель закрытой транспортной задачи
Имеется m пунктов производства однородного продукта с объемами производства A1,A2,…,Am. Имеется n пунктов потребления этого продукта с объемами потребления b1,b2,…,bn. Известны оценки С= (Cij) M*N транспортных затрат на перевозку единицы груза от i-того поставщика к j-тому потребителю (по коммуникации от i к j). Надо так прикрепить потребителей к поставщикам, чтобы минимизировать суммарные транспортные затраты на перевозку груза. ЭММ ТЗ: Обозначим через Xij, i=1,m j=1,n объемы перевозок по коммуникации i→j, т.е. в рассмотрение вводится матрица X=(Xij)m*n.; Min ∑ ∑ Cij Xij; ∑ Xij = Ai, i=1,m; ∑ Xij = Bj, j=1,n. Необходимым и достаточным условием разрешимости задачи является наличие баланса между спросом и предложением ∑Ai = ∑Bj. Если имеется такое равенство, то ТЗ называется закрытой.