
- •1. Экономико-математическая модель (эмм). Понятие, пример, общая классификация эмм
- •2. Общая задача линейного программирования, основные элементы и понятия
- •3. Общая запись оптимизационной эмм (задача оптимального программирования). Основные элементы и понятия
- •4. Графический метод решения задачи линейного программирования
- •5. Особые случаи решения злп графическим методом
- •6. Каноническая форма записи злп. Способы приведения злп к каноническому виду
- •7. Экономический смысл основных и дополнительных переменных в канонической форме задачи об оптимальном использовании ограниченных ресурсов
- •8. Решение систем линейных уравнений методом Жордана - Гаусса. Общее решение, частное, базисные и опорные решения слу
- •9. Основные свойства задачи линейного программирования. Основы симплекс-метода: общая схема алгоритма метода
- •10. Алгоритм симплексного метода с естественным базисом
- •11. Алгоритм симплексного метода с искусственным базисом
- •12. Особые случаи решения злп симплексным методом
- •13. Правило построения двойственной задачи, математическая запись. Теоремы двойственности и их использование для анализа оптимальных решений
- •14. Экономический смысл задачи, двойственной к задаче оптимального использования ресурсов
- •15. Экономическая интерпретация злп: задача об оптимальном использовании ограниченных ресурсов, двойственная задача и ее экономическое содержание
- •16. Двойственные оценки в злп, интервалы устойчивости двойственных оценок. Свойства двойственных оценок и их использование для анализа оптимальных решений
- •17. Двойственные оценки как мера влияния ограничений на целевую функцию
- •18. Постановка и экономико-математическая модель открытой транспортной задачи
- •19. Постановка и экономико-математическая модель закрытой транспортной задачи
- •20. Задача о назначениях, постановка и экономико-математическая модель
- •21. Задачи дискретной (целочисленной) оптимизации, пример
- •22. Экономико-математическая модель межотраслевого стоимостного баланса (модель Леонтьева)
- •23. Коэффициенты прямых и полных материальных затрат, связь между ними, методы расчета
- •24. Матрица прямых материальных затрат, ее продуктивность. Признаки продуктивности
- •25. Определение объемов валовой и конечной продукции по модели Леонтьева
- •26. Матрица коэффициентов полных материальных затрат, способы ее определения
- •27. Структура временных рядов экономических показателей
- •28. Требования, предъявляемые к исходной информации при моделировании экономических процессов на основе временных рядов
- •29. Основные этапы построения моделей экономического прогнозирования
- •30. Выявление и устранение аномальных наблюдений во временных рядах
- •31. Предварительный анализ временных рядов. Проверка наличия тренда
- •32. Предварительный анализ временных рядов. Сглаживание временных рядов
- •33. Предварительный анализ временных рядов. Вычисление количественных характеристик развития экономических процессов
- •34. Построение моделей кривых роста. Оценка параметров кривых роста с помощью метода наименьших квадратов (мнк)
- •35. Временной ряд, тренд, трендовая модель. Получение трендовой модели средствами Excel
- •36. Оценка качества моделей прогнозирования. Проверка адекватности и оценка точности
- •37. Оценка адекватности модели кривой роста
- •38. Оценка точности моделей кривой роста, выбор наилучшей кривой роста
- •39. Прогнозирование на основе кривой роста
- •40. Производственные функции: понятие, общая классификация и формальные свойства
- •41. Назначение и область применения сетевых моделей. Основные элементы сетевой модели
- •42. Имитационное моделирование, основные понятия и примеры применения
- •43. Основные понятия теории игр, игры с природой
- •44. Основные понятия о системах массового обслуживания, примеры их применения
9. Основные свойства задачи линейного программирования. Основы симплекс-метода: общая схема алгоритма метода
В основе математического метода получения оптимального решения лежат основные свойства ЗЛП: 1.Не существует локального экстремума отличного от глобального. Если экстремум есть, то он единственный. 2.Множество всех планов ЗЛП является выпуклой многогранной областью (многогранником решения). 3.ЦФ в ЗЛП достигает своего max (min) значения в угловой точке многогранника решения (в вершине). Если ЦФ принимает max решение более чем в одной угловой точке, то она достигает того же значения в любой точке, являющейся выпуклой линейной комбинацией этих точек. 4.Каждой угловой точке отвечает опорный план ЗЛП (не отрицательное базисное решение соответствующей КЗЛП). Симплексный метод позволяет, исходя из известного опорного плана задачи, за конечное число шагов получить ее оптимальный план. Каждый шаг состоит в нахождении нового опорного плана, которому соответствует большее, чем в пред плане значение линейной функции. Общая идея симплексного метода (метода последовательного улучшения плана) для решения ЗЛП состоит в следующем:1) умение находить начальный опорный план; 2)наличие признака оптимальности опорного плана; 3)умение переходить к нехудшему опорному плану. Суть симплекс-метода: реализует перебор точек экстремума функции в направлении улучшения значения целевой функции. Сначала находится допустимое начальное (опорное) решение, т.е. какая-либо угловая точка ОДР. Процедура метода позволяет ответить на вопрос, явл ли это решение оптимальным. Если да, то задача решена. Если нет, то выполняется переход к смежной угловой точке ОДР, где значение ЦФ улучшается. Симплекс- метод состоит из 2 вычислительных процедур: 1) с-м с естественным базисом; 2) с-м с искусственным базисом. Выбор конкретной вычислит процедуры осущ после приведения исходной ЗЛП к каноническому виду.
10. Алгоритм симплексного метода с естественным базисом
Для его применения КЗЛП должна содержать единичную подматрицу M*N. В этом случае очевиден начальный опорный план (неотрицательное базисное решение системы ограничений КЗЛП). Проверка на оптимальность опорного плана происходит с помощью признака оптимальности. Переход к другому опорному плану проводится с помощью преобразований Жордана-Гаусса. Полученный новый опорный план проверяется снова на оптимальность и т.д. Процесс заканчивается за конечное число шагов, причем на последнем шаге либо выявляется неразрешимость задачи, либо получается оптимальный опорный план и соответствующее ему оптимальное значение ЦФ. Признак оптимальности состоит из двух теорем: 1.Если для всех векторов А1,А2,…,Аn системы ограничений выполняется условие ∆j = Zj – Cj ≥ 0, где Zj = ∑ Ci Aij, то полученный опорный план является оптимальным. 2.Если для некоторого вектора, не входящего в базис, выполняется условие ∆j = Zj – Cj < 0, то можно получить новый опорный план, для которого значение ЦФ будет больше исходного, при этом могут быть два случая а)Если все компоненты вектора, подлежащего вводу в базис, не положительны , то ЗЛП не имеет решения. б)Если имеется хотя бы одна положительная компонента у вектора, подлежащего вводу в базис, то можно получить новый опорный план. На основании признака оптимальности в базис вводится вектор Ak , давший минимальную отрицательную величину симплекс - разности: ∆k = min (Zj – Cj), j = 1,‾n. Чтобы выполнялось условие не отрицательности значений опорного плана, выводится из базиса вектор Ar, который дает минимальное положительное оценочное отношение: Q = min Bi / Aik = Br/Ark, Aik >0, i = 1,m. Строка Arназывается направляющей, столбец Ak и элемент Ark направляющими. Элементы направляющей строки в новой симплекс-таблице вычисляются по формулам: a’rj = arj / ark, j = 1,n. Элементы i-той строки: a’ij = (aij ark – arj aik) / ark, i = 1,m, j = 1,n, i ≠ r.Значения нового опорного плана: b’r = br / ark для i=r; b’i = (bi ark – br aik) / ark для i≠r. Процесс решения продолжают либо до получения нового оптимального плана либо до установления неограниченности ЦФ. Если среди оценок оптимального плана нулевые только оценки, соответствующие базисным векторам, то это говорит об единственности оптимального плана. Если же нулевая оценка соответствует вектору, не входящему в базис, то это значит, что оптимальный план не единственный.