
- •1. Экономико-математическая модель (эмм). Понятие, пример, общая классификация эмм
- •2. Общая задача линейного программирования, основные элементы и понятия
- •3. Общая запись оптимизационной эмм (задача оптимального программирования). Основные элементы и понятия
- •4. Графический метод решения задачи линейного программирования
- •5. Особые случаи решения злп графическим методом
- •6. Каноническая форма записи злп. Способы приведения злп к каноническому виду
- •7. Экономический смысл основных и дополнительных переменных в канонической форме задачи об оптимальном использовании ограниченных ресурсов
- •8. Решение систем линейных уравнений методом Жордана - Гаусса. Общее решение, частное, базисные и опорные решения слу
- •9. Основные свойства задачи линейного программирования. Основы симплекс-метода: общая схема алгоритма метода
- •10. Алгоритм симплексного метода с естественным базисом
- •11. Алгоритм симплексного метода с искусственным базисом
- •12. Особые случаи решения злп симплексным методом
- •13. Правило построения двойственной задачи, математическая запись. Теоремы двойственности и их использование для анализа оптимальных решений
- •14. Экономический смысл задачи, двойственной к задаче оптимального использования ресурсов
- •15. Экономическая интерпретация злп: задача об оптимальном использовании ограниченных ресурсов, двойственная задача и ее экономическое содержание
- •16. Двойственные оценки в злп, интервалы устойчивости двойственных оценок. Свойства двойственных оценок и их использование для анализа оптимальных решений
- •17. Двойственные оценки как мера влияния ограничений на целевую функцию
- •18. Постановка и экономико-математическая модель открытой транспортной задачи
- •19. Постановка и экономико-математическая модель закрытой транспортной задачи
- •20. Задача о назначениях, постановка и экономико-математическая модель
- •21. Задачи дискретной (целочисленной) оптимизации, пример
- •22. Экономико-математическая модель межотраслевого стоимостного баланса (модель Леонтьева)
- •23. Коэффициенты прямых и полных материальных затрат, связь между ними, методы расчета
- •24. Матрица прямых материальных затрат, ее продуктивность. Признаки продуктивности
- •25. Определение объемов валовой и конечной продукции по модели Леонтьева
- •26. Матрица коэффициентов полных материальных затрат, способы ее определения
- •27. Структура временных рядов экономических показателей
- •28. Требования, предъявляемые к исходной информации при моделировании экономических процессов на основе временных рядов
- •29. Основные этапы построения моделей экономического прогнозирования
- •30. Выявление и устранение аномальных наблюдений во временных рядах
- •31. Предварительный анализ временных рядов. Проверка наличия тренда
- •32. Предварительный анализ временных рядов. Сглаживание временных рядов
- •33. Предварительный анализ временных рядов. Вычисление количественных характеристик развития экономических процессов
- •34. Построение моделей кривых роста. Оценка параметров кривых роста с помощью метода наименьших квадратов (мнк)
- •35. Временной ряд, тренд, трендовая модель. Получение трендовой модели средствами Excel
- •36. Оценка качества моделей прогнозирования. Проверка адекватности и оценка точности
- •37. Оценка адекватности модели кривой роста
- •38. Оценка точности моделей кривой роста, выбор наилучшей кривой роста
- •39. Прогнозирование на основе кривой роста
- •40. Производственные функции: понятие, общая классификация и формальные свойства
- •41. Назначение и область применения сетевых моделей. Основные элементы сетевой модели
- •42. Имитационное моделирование, основные понятия и примеры применения
- •43. Основные понятия теории игр, игры с природой
- •44. Основные понятия о системах массового обслуживания, примеры их применения
40. Производственные функции: понятие, общая классификация и формальные свойства
ПФ- зависимость между объемами затрачиваемых в производстве ресурсов (независимые переменные х1,х2,…,хn, число кот n равно числу ресурсов) и объемом выпускаемой продукции Y. Основными производ ресурсами явл труд L и капитал К. Если обозначить объем выпускаемой продукции через Y, то ПФ можно записать так: Y= f (K, L). Это выражение означает, что объем выпуска продукции явл функцией кол-ва капитала и кол-ва труда. Изменения в технологи изменяют и ПФ. ПФ позволяют: производить разнообразные аналитические расчеты; опред эффективность исп ресурсов и целесообразность их дополнительного вовлечения в сферу пр-ва; прогнозировать выпуск продукции при тех или иных вариантах развития объекта. Особенности оценки параметров ПФ: 1. Большинство ПФ не явл линейными относительно параметров и не сводятся к линейным путем анал преобразований; 2. В качестве критерия оценки параметров исп функции достаточно сложного вида; 3. Как ПФ, так и критерий оценки параметров мб не дифференцируемыми. Агрегированная производственная функция может описывать объёмы выпуска народного хозяйства в целом. В зависимости от анализа влияния факторов производства на объём выпуска в определённый момент времени или в разные промежутки времени производственные функции делятся на статические: P = f(x1,x2,...,xn) и динамические: P = f(x1(t),...,xk(t),...,xn). Можно выделить два основных свойства. 1. Существует предел для роста объема выпуска, который может быть достигнут ростом затрат одного ресурса при прочих равных условиях. Так, в фирме при фиксированном количестве машин и производственных помещений имеется предел роста выпуска путем увеличения дополнительных рабочих, поскольку рабочий не будет обеспечен машинами для работы. 2.Существует определенная взаимная дополняемость (комплектарность) факторов производства, однако без уменьшения объема выпуска вероятна и определенная взаимозаменяемость данных факторов производства. Так, для выпуска блага могут быть использованы различные комбинации ресурсов; можно произвести это благо при использовании меньшего объема капитала и большего объема затрат труда, и наоборот. В первом случае производство считается технически эффективным в сравнении со вторым случаем. Однако существует предел того, насколько труд может быть заменен большим объемом капитала, чтобы не сократилось производство. С другой стороны, имеется предел применения ручного труда без использования машин.
41. Назначение и область применения сетевых моделей. Основные элементы сетевой модели
Сетевой моделью (другие названия сетевой график, сеть) называется экономико-компьютерная модель, отражающая комплекс работ (операций) и событий, связанных с реализацией некоторого проекта (научно-исследовательского, производственного и др.), в их логической и технологической последовательности и связи. Анализ сетевой модели, представленной в графической или табличной (матричной) форме, позволяет, во-первых, более четко выявить взаимосвязи этапов реализации проекта и во-вторых, определить наиболее оптимальный порядок выполнения этих этапов в целях, например, сокращения сроков выполнения всего комплекса работ. Таким образом, методы сетевого моделирования относятся к методам принятия оптимальных решений. Первая глава Сетевые модели планирования и управления. Математический аппарат сетевых моделей базируется на теории графов. Графом называется совокупность двух конечных множеств - множества точек, которые называются вершинами, и множества пар вершин, которые называются ребрами. Если рассматриваемые пары вершин являются упорядоченными, т. е. на каждом ребре задается направление, то граф называется ориентированным в противном случае неориентированным. Последовательность неповторяющихся ребер, ведущая от некоторой вершины к другой, образует путь. Граф называется связным, если для любых двух его вершин существует путь, их соединяющий в противном случае граф называется несвязным. В экономике чаще всего используются два вида графов дерево и сеть. Дерево представляет собой связный граф без циклов, имеющий исходную вершину (корень) и крайние вершины пути от исходной вершины к крайним вершинам называются ветвями. Сеть это ориентированный конечный связный граф, имеющий начальную вершину (источник) и конечную вершину (сток). Таким образом, сетевая модель представляет собой граф вида сеть. В экономических исследованиях сетевые модели возникают при моделировании экономических процессов методами сетевого планирования и управления (СПУ). Объектом управления в системах сетевого планирования и управления являются коллективы исполнителей, располагающих определенными ресурсами и выполняющих определенный комплекс операций, который призван обеспечить достижение намеченной цели, например, разработку нового изделия, строительства объекта и т.п. Основой сетевого планирования и управления является сетевая модель (СМ), в которой моделируется совокупность взаимосвязанных работ и событий, отображающих процесс достижения определенной цели. Она может быть представлена в виде графика или таблицы. Основные понятия сетевой модели событие, работа, путь.