
- •1. Экономико-математическая модель (эмм). Понятие, пример, общая классификация эмм
- •2. Общая задача линейного программирования, основные элементы и понятия
- •3. Общая запись оптимизационной эмм (задача оптимального программирования). Основные элементы и понятия
- •4. Графический метод решения задачи линейного программирования
- •5. Особые случаи решения злп графическим методом
- •6. Каноническая форма записи злп. Способы приведения злп к каноническому виду
- •7. Экономический смысл основных и дополнительных переменных в канонической форме задачи об оптимальном использовании ограниченных ресурсов
- •8. Решение систем линейных уравнений методом Жордана - Гаусса. Общее решение, частное, базисные и опорные решения слу
- •9. Основные свойства задачи линейного программирования. Основы симплекс-метода: общая схема алгоритма метода
- •10. Алгоритм симплексного метода с естественным базисом
- •11. Алгоритм симплексного метода с искусственным базисом
- •12. Особые случаи решения злп симплексным методом
- •13. Правило построения двойственной задачи, математическая запись. Теоремы двойственности и их использование для анализа оптимальных решений
- •14. Экономический смысл задачи, двойственной к задаче оптимального использования ресурсов
- •15. Экономическая интерпретация злп: задача об оптимальном использовании ограниченных ресурсов, двойственная задача и ее экономическое содержание
- •16. Двойственные оценки в злп, интервалы устойчивости двойственных оценок. Свойства двойственных оценок и их использование для анализа оптимальных решений
- •17. Двойственные оценки как мера влияния ограничений на целевую функцию
- •18. Постановка и экономико-математическая модель открытой транспортной задачи
- •19. Постановка и экономико-математическая модель закрытой транспортной задачи
- •20. Задача о назначениях, постановка и экономико-математическая модель
- •21. Задачи дискретной (целочисленной) оптимизации, пример
- •22. Экономико-математическая модель межотраслевого стоимостного баланса (модель Леонтьева)
- •23. Коэффициенты прямых и полных материальных затрат, связь между ними, методы расчета
- •24. Матрица прямых материальных затрат, ее продуктивность. Признаки продуктивности
- •25. Определение объемов валовой и конечной продукции по модели Леонтьева
- •26. Матрица коэффициентов полных материальных затрат, способы ее определения
- •27. Структура временных рядов экономических показателей
- •28. Требования, предъявляемые к исходной информации при моделировании экономических процессов на основе временных рядов
- •29. Основные этапы построения моделей экономического прогнозирования
- •30. Выявление и устранение аномальных наблюдений во временных рядах
- •31. Предварительный анализ временных рядов. Проверка наличия тренда
- •32. Предварительный анализ временных рядов. Сглаживание временных рядов
- •33. Предварительный анализ временных рядов. Вычисление количественных характеристик развития экономических процессов
- •34. Построение моделей кривых роста. Оценка параметров кривых роста с помощью метода наименьших квадратов (мнк)
- •35. Временной ряд, тренд, трендовая модель. Получение трендовой модели средствами Excel
- •36. Оценка качества моделей прогнозирования. Проверка адекватности и оценка точности
- •37. Оценка адекватности модели кривой роста
- •38. Оценка точности моделей кривой роста, выбор наилучшей кривой роста
- •39. Прогнозирование на основе кривой роста
- •40. Производственные функции: понятие, общая классификация и формальные свойства
- •41. Назначение и область применения сетевых моделей. Основные элементы сетевой модели
- •42. Имитационное моделирование, основные понятия и примеры применения
- •43. Основные понятия теории игр, игры с природой
- •44. Основные понятия о системах массового обслуживания, примеры их применения
25. Определение объемов валовой и конечной продукции по модели Леонтьева
Задав в модели величины валовой продукции каждой отрасли (Xi), можно определить объемы конечной продукции каждой отрасли (Yi): Y=(E-A)X
Задав величины конечной продукции всех отраслей (Yi) можно определить величины валовой продукции каждой отрасли (Xi): X=(E-A)ˉ¹ Y
26. Матрица коэффициентов полных материальных затрат, способы ее определения
Матрица В носит название матрицы полных материальных затрат, а ее элементы bij называют коэффициентами полных материальных затрат. Коэффициент bij показывает, каков должен быть валовый выпуск i-й отрасли для того, чтобы обеспечить выпуск единицы конечного продукта j-й отрасли. Можно показать, что
B = E + A + A2 + A3 + ... (3.7) |
|
Умножим обе части на (E - A):
B(E - A) = (E + A + A2 + A3 + ...)(E - A), |
|
B(E - A) = E + A + A2 + A3 + ..- A - A2 - A3 - ..., |
|
B(E - A) = E, |
|
B = E / (E - A), |
|
B = (E - A)-1. |
|
Доказано. Из соотношения (3.7) следует bij ≥ aij, Таким образом, коэффициент полных материальных затрат bij, описывающий потребность в выпуске продукции i-й отрасли в расчете на единицу конечного продукта j-й отрасли, не меньше коэффициента прямых материальных затрат aij, рассчитываемого на единицу валового выпуска. Кроме того, из соотношения (3.7) для диагональных элементов матрицы B следует:
bii ≥ 1, |
27. Структура временных рядов экономических показателей
Временной ряд экономических показателей можно разложить на 4 структуро-образующих элемента: 1.Тренд (Ut) – устойчивое систематическое изменение процесса в течение продолжительного времени. 2. Сезонная компонента (Vt) – колебания, носящие строго периодический или близкий к нему характер и завершающиеся в течении года. 3. Циклическая компонента (Ct) – период колебаний составляет несколько лет. 4. Случайная компонента (εt) – составная часть временного ряда, остающаяся после выделения из него регулярных компонент.
28. Требования, предъявляемые к исходной информации при моделировании экономических процессов на основе временных рядов
1. Сопоставимость достигается в результате одинаковым подходом к наблюдениям на разных этапах формирования ряда динамики. Одни и те же единицы измерения, одинаковый шаг наблюдений, один и тот же интервал времени, одна и та же методика, одни и те же элементы, относящиеся к неизменной совокупности. 2. Однородность данных – отсутствие сильных изломов тенденций, а также аномальных наблюдений. 3. Представительность данных хар-ся их полнотой. Число наблюдений должно быть достаточным для поставленной задачи. 4. Устойчивость – преобладание закономерности над случайностью.