
- •1. Экономико-математическая модель (эмм). Понятие, пример, общая классификация эмм
- •2. Общая задача линейного программирования, основные элементы и понятия
- •3. Общая запись оптимизационной эмм (задача оптимального программирования). Основные элементы и понятия
- •4. Графический метод решения задачи линейного программирования
- •5. Особые случаи решения злп графическим методом
- •6. Каноническая форма записи злп. Способы приведения злп к каноническому виду
- •7. Экономический смысл основных и дополнительных переменных в канонической форме задачи об оптимальном использовании ограниченных ресурсов
- •8. Решение систем линейных уравнений методом Жордана - Гаусса. Общее решение, частное, базисные и опорные решения слу
- •9. Основные свойства задачи линейного программирования. Основы симплекс-метода: общая схема алгоритма метода
- •10. Алгоритм симплексного метода с естественным базисом
- •11. Алгоритм симплексного метода с искусственным базисом
- •12. Особые случаи решения злп симплексным методом
- •13. Правило построения двойственной задачи, математическая запись. Теоремы двойственности и их использование для анализа оптимальных решений
- •14. Экономический смысл задачи, двойственной к задаче оптимального использования ресурсов
- •15. Экономическая интерпретация злп: задача об оптимальном использовании ограниченных ресурсов, двойственная задача и ее экономическое содержание
- •16. Двойственные оценки в злп, интервалы устойчивости двойственных оценок. Свойства двойственных оценок и их использование для анализа оптимальных решений
- •17. Двойственные оценки как мера влияния ограничений на целевую функцию
- •18. Постановка и экономико-математическая модель открытой транспортной задачи
- •19. Постановка и экономико-математическая модель закрытой транспортной задачи
- •20. Задача о назначениях, постановка и экономико-математическая модель
- •21. Задачи дискретной (целочисленной) оптимизации, пример
- •22. Экономико-математическая модель межотраслевого стоимостного баланса (модель Леонтьева)
- •23. Коэффициенты прямых и полных материальных затрат, связь между ними, методы расчета
- •24. Матрица прямых материальных затрат, ее продуктивность. Признаки продуктивности
- •25. Определение объемов валовой и конечной продукции по модели Леонтьева
- •26. Матрица коэффициентов полных материальных затрат, способы ее определения
- •27. Структура временных рядов экономических показателей
- •28. Требования, предъявляемые к исходной информации при моделировании экономических процессов на основе временных рядов
- •29. Основные этапы построения моделей экономического прогнозирования
- •30. Выявление и устранение аномальных наблюдений во временных рядах
- •31. Предварительный анализ временных рядов. Проверка наличия тренда
- •32. Предварительный анализ временных рядов. Сглаживание временных рядов
- •33. Предварительный анализ временных рядов. Вычисление количественных характеристик развития экономических процессов
- •34. Построение моделей кривых роста. Оценка параметров кривых роста с помощью метода наименьших квадратов (мнк)
- •35. Временной ряд, тренд, трендовая модель. Получение трендовой модели средствами Excel
- •36. Оценка качества моделей прогнозирования. Проверка адекватности и оценка точности
- •37. Оценка адекватности модели кривой роста
- •38. Оценка точности моделей кривой роста, выбор наилучшей кривой роста
- •39. Прогнозирование на основе кривой роста
- •40. Производственные функции: понятие, общая классификация и формальные свойства
- •41. Назначение и область применения сетевых моделей. Основные элементы сетевой модели
- •42. Имитационное моделирование, основные понятия и примеры применения
- •43. Основные понятия теории игр, игры с природой
- •44. Основные понятия о системах массового обслуживания, примеры их применения
23. Коэффициенты прямых и полных материальных затрат, связь между ними, методы расчета
max f(x)=∑CjXj. При ограничениях: ∑АijXj=Bi, i= от 1 до m, Xi≥ 0, Bi≥0, i= от 1 до m, j= от1 до n. Приведение ЗЛП к каноническому виду осуществляется введением в левую часть соответствующего ограничения вида k-й дополнительной переменной Xn+k ≥ 0 со знаком (– )в случае ограничения типа ≥ и знаком (+) в случае ограничения типа ≤. Если на некоторую переменную Xr не накладывается условие неотрицательности, то делают замену переменных: Xr=Xr' – Xr", Xr'≥0 и Xr"≥0. Коэффициенты прямых материальных затрат являются основными параметрами статической межотраслевой модели. Их значения могут быть получены двумя путями:
1) статистически. Коэффициенты определяются на основе анализа отчётных балансов за прошлые годы. Их неизменность во времени определяется подходящим выбором отраслей;
2) нормативно. Предполагается, что отрасль состоит из отдельных производств, для которых уже разработаны нормативы затрат; на их основе рассчитываются среднеотраслевые коэффициенты. Установим некоторые свойства коэффициентов прямых материальных затрат.
1.
Неотрицательность, т.е. aij
≥ 0,
Это утверждение следует из неотрицательности
величин xij
и положительности валовых выпусков
Xj.
2.
Сумма элементов матрицы A по любому из
столбцов меньше единицы, т.е.
Взаимосвязь
коэффициентов прямых и полных материальных
затрат
проще всего проследить на примере:
пусть единицей выпуска хлебопекарной
промышленности является хлеб (рисунок
3.1).
Рисунок 3.1 - Взаимосвязь коэффициентов прямых и полных материальных затрат. Полные затраты электроэнергии для нашего примера складываются из прямых затрат и косвенных затрат всех уровней. Косвенные затраты высоких уровней являются незначительными и при практических расчетах ими можно пренебречь.
24. Матрица прямых материальных затрат, ее продуктивность. Признаки продуктивности
По ЭММ Леонтьева (Е-А)X=Y можно определить объемы валовой продукции отрасли Х1, Х2, …, Хn по заданным объемам конечной продукции: Х = (Е-А)‾¹ Y; X=BY, B=(E-A)‾¹. Элементы Bij обратной матрицы B = (E-A)‾¹ называются коэффициентами полных (материальных) затрат, т.е. это затраты i-й отрасли на каждый рубль конечной продукции отрасли j. Соответственно матрицу В называют матрицей коэффициентов полных затрат, а матрицу А – матрицей коэффициентов прямых затрат. Неотрицательную матрицу А (А≥0) называют продуктивной, если существует хотя бы один такой положительный вектор Х>0, что каждый объект может произвести некоторое количество конечной продукции. Для продуктивности матрицы А необходимо и достаточно, что бы выполнялось одно из перспективных условий: 1) матрица (Е-А) неотрицательно обратима, т.е. существует обратная матрица (Е-А)‾¹ и все ее элементы неотрицательны, 2) положительны все главные миноры матрицы (Е – А), 3) матричный ряд
Е + А + А² + … + =∑А® сходятся, причем ∑А®=(Е-А)‾¹. 4) максимальное собственное число матрицы А меньше 1, т.е. Λ(А) < 1. Собственными значениями (числами) квадратной матрицы А называются корни (решения) характеристического уравнения | А-λЕ |=0.