
- •И нформационные технологии
- •2.Понятие об информации, сообщении, сигнале, кодировании и модуляции. Обобщенная система передачи информации и назначение ее основных элементов.
- •3.Преобразование непрерывных сигналов в дискретные, их передача в виде цифровых сигналов.
- •4.Ряд Фурье для периодической последовательности импульсов и его мощность. Амплитудно-частотная (ачх) и фазочастотная (фхч) характеристики периодической последовательности импульсов.
- •5.Спектральная плотность s(w) для непериодического сигнала. Прямое и обратное преобразование Фурье.
- •Спутниковые системы и технологии сбора информации
- •9.Дифференциальный способ определения координат. Типы каналов передачи дифференциальных поправок. Способы дифференциальной коррекции. Система дифференциальной коррекции waas. Точность dgps.
- •Защита информации
- •13.Защита приложений и баз данных. Структура «пользователь (группа) – право». Ролевая модель организации прав доступа. Организация доступа в субд «клиент-сервер».
- •14.Системы засекреченной связи. Общая структура, принцип функционирования. Стойкость алгоритма шифрования. Теория Шеннона.
- •15.Криптографические методы защиты информации, их классификация. Требования к криптографическому закрытию информации. Стандарт на шифрование (общее описание алгоритма des).
- •16.Концепция криптосистем с открытым ключом. Электронная цифровая подпись. Структурная схема построения эцп
- •17.Разрушающие программные средства: компьютерный вирус (классификация, признаки заражения, методы обнаружения и обезвреживания вируса).
- •18.Методы защиты ис от несанкционированного доступа на логическом, физическом и юридическом уровнях. Российское законодательство в области защиты информации.
- •19.Защита информации в сетях Internet . Назначение экранирующих систем. Требования к построению экранирующих систем. Организация политики безопасности в сетях Internet.
- •Надежность информационных систем
- •24.Надежность ис. Факторы, влияющие на надежность ис. Методы повышения надежности ис.
- •Проектирование информационных систем
- •25.Структурный подход к проектированию информационных систем.
- •26.Цикл программного обеспечения (жц по), модели жц.
- •27.Case -технологии, как новые средства для проектирования ис. Case - пакет фирмы platinum, его состав и назначение. Критерии оценки и выбора case - средств.
- •28.Стандарт idef, его основные составляющие.
- •29.Принципы системного структурного анализа, его основные аспекты.
- •30.Инструментальная среда bpWin, ее назначение, состав моделей, возможности пакета. Состав отчетов (документов), проектируемой модели в среде bpWin.
- •31.Инструментальная среда erWin, ее назначение и состав решаемых задач.
- •Информационные сети и корпоративные информационные системы
- •33.Модель взаимодействия открытых систем (Open System Interconnection,osi).Стандартные стеки коммуникационных протоколов. Реализация межсетевого взаимодействия средствами тср/ip
- •34.Коммуникационные устройства информационной сети. Среда передачи данных. Стандартные технологии построения локальных и глобальных сетей.
- •35.Методы коммутации в информационных сетях (коммутация каналов, коммутация пакетов, коммутация сообщений).
- •36.Уровень межсетевого взаимодействия (Network layer), его назначение, функции и протоколы. Принципы маршрутизации в составных сетях.
- •37.Корпоративная информационная система (кис). Требования к корпоративным ис. Проблемы внедрения. Примеры кис.
- •38.Обеспечение информационной безопасности в современных корпоративных сетях. Методы защиты от несанкционированного доступа. Технологии: Intranet , Extranet и vpn.
- •Базы и банки данных
- •39.Базы данных (бд). Основные этапы разработки баз данных. Методы создания структуры базы данных. Типы данных. Структурные элементы бд.
- •40.Модели данных, применяемых в базах данных. Связи в моделях. Архитектура баз данных. Реляционная, иерархическая и сетевая модели данных. Свойства реляционной модели данных.
- •41.Системы управления базами данных (субд). Назначение, виды и основные функциональные возможности субд. Обзор существующих субд. Состав субд, их производительность.
- •42.Инструментальные средства разработки баз данных. Построение er-моделей баз данных
- •43.Стандарт sql – языка запросов. Sql – запросы для получения информации из баз данных. Основные принципы, команды и функции построения sql запросов.
- •44.Модификация данных с помощью sql – языка запросов. Создание и изменение структуры таблиц. Добавление и редактирование данных. Поиск и сортировка данных на основе sql.
- •45.Нормализация данных. Первая, вторая, третья нормальные формы. Порядок приведения данных к нормальной форме.
- •46.Дать понятия: первичный ключ (pк), внешний ключ (fk), альтернативный ключ, инверсный вход. Типы и организация связей между таблицами.
- •47.Субд sql server 2000. Типы данных, применяемые в ней, организация структур таблиц с помощью sql server 2000.
- •48.Использование источника данных odbc для управления данными (создание и использование).
- •Представление знаний в экспертных системах
- •49.Системы искусственного интеллекта. Классификация основных направлений исследований в области искусственного интеллекта.
- •1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural language processing)
- •1.2.4. Интеллектуальные роботы (robotics)
- •1.2.5. Обучение и самообучение (machine learning)
- •1.2.6. Распознавание образов (pattern recognition)
- •1.2.7. Новые архитектуры компьютеров (new hardware platforms and architectures)
- •1.2.8. Игры и машинное творчество
- •1.2.9. Другие направления
- •51.Модели представления знаний (продукционная, фреймовая, сетевая модель).
- •Продукционная модель
- •52.Классификация систем, основанных на знаниях.
- •2.2.1. Классификация по решаемой задаче
- •2.2.2. Классификация по связи с реальным временем
- •2.2.3. Классификация по типу эвм
- •2.2.4. Классификация по степени интеграции с другими программами
- •Геоинформатика и геоинформационные системы
- •53.Сущность и основные понятия геоинформатики. Области применения геоинформатики.
- •55.Топологическая концепция гис. Геореляционная модель связи объектов и их атрибутов.
- •56.Шкалы сравнения атрибутивных данных. Виды шкал и условия их использования.
- •58.Федеральные, региональные и муниципальные гис. Требования к программному и информационному обеспечению гис.
- •59.Основные этапы создания гис - проектов. Источники данных в гис, их характеристики.
- •60.Пространственный (географический) анализ. Буферные зоны, оверлеи. Создание тематических карт на основе гис - технологий.
- •62.3D карты. Способы создания и использования трехмерных карт.
- •63.Геоинформационное моделирование. Основы сетевого анализа и области применения.
- •64.Системы автоматизированного проектирования (cad – MicroStation, AutoCad и др.). Основные концепции двумерного (2d) и трехмерного (3d) проектирования. Связь и интеграция cad и гис.
- •Технологии создания цифровых моделей местности как основы геоинформационных систем
- •66.Растровая и векторная форма представления данных. Файловые форматы этих данных. Регистрация растровых изображений в картографических системах.
- •67.Современные технологии создания цифровых и электронных карт и планов. Классификация типов объектов при оцифровке (векторизации) карт. Классификаторы топографической информации.
- •69.Программы – векторизаторы, их характеристики, принципы работы и возможности. Методы и точность векторизации объектов. Анализ качества векторизации. Контроль топологической структуры цифровой карты.
Спутниковые системы и технологии сбора информации
7.Применение глобальных навигационных спутниковых систем (ГНСС) в геодезии. Преимущества и недостатки спутниковых технологий. Принципы функционирования спутниковых радио навигационных систем (СРНС). Три подсистемы СРНС. Спутниковые сигналы GPS. Типы спутниковой аппаратуры и ее выбор для выполнения инженерно-геодезических работ.
ОТВЕТ:
Преимущества спутниковых технологий: 1. Не требуется прямая видимость. 2. Возможно измерение расстояний длиной сотни километров с точностью несколько миллиметров. 3. Возможны круглосуточные межпогодные явления. 4. Требуется соответствующее программное обеспечение и грамотное его использование. 5. Предоставление трех пространственных координат (B, L,H), (X,Y,Z). Недостатки: невозможность получить непосредственно из измерений нормальные высоты с точностью геометрического нивелирования; трудность работы в залесенной местности. Проблемы: получение координат пунктов в местной системе, так как спутниковые технологии предоставляют координаты в общеземной системе координат, связанной с центром Масс земли, а потребителю нужно знать координаты в местной системе. Области применения спутниковых технологий: 1) развитие опорных геодезических сетей; 2) геодезические съемки разного назначения; 3) решение инженерных прикладных задач в геодезии; 4) распространение единой высокоточной шкалы времени; 5) сбор материала для ГИС; 6) кадастры в землеустройстве; 7) навигация (наземная, морская, воздушная); 8) диспетчерские службы. Направления развития спутниковых технологий: 1. Совершенствование работы самих систем и спутников. 2. Разработка теории методов GPS/ГЛОНАСС. 3. Появление специализированных служб. Спутниковые навигационные системы ГЛОНАСС и GPS: 1) Принцип действия (определение координат) – пространственная линейная засечка. Три сферы с радиусами ρ1, ρ2, ρ3 (измеренные расстояния до ИСЗ) пересекаются в двух точках, но из двух решений выбирается одно – правдоподобное. 2) Измерение расстояния – в GPS и ГЛОНАСС реализован односторонний (беззапросный) метод измерения расстояния. Электромагнитный сигнал от спутника проходит в одном направлении. ρ=v∙τ, где v=c+ΣПОПРАВОК – скорость; τ – время прохождения электромагнитного сигнала от спутника к приемнику. Время можно измерить, если часы спутника и приемника точно синхронизированы. Синхронизация часов (автоматическая) – в лучшем случае до 10-9 с, она даст погрешность расстояния 30 см. чтобы обеспечит миллиметровый уровень точности измерения ρ, поправка приемника ∆t – в качестве дополнительного неизвестного в системе уравнений связи координат. Вывод: При GPS-измерениях неизвестными являются три пространственных координаты и ∆t – поправка часов приемника. Чтобы определить 4 неизвестных, нужно отнаблюдать как минимум 4 спутника. 3) Структура GPS и ГЛОНАСС. И GPS, и ГЛОНАСС разделяются на 3 подсистемы: а) подсистема космических аппаратов (ПКА): «созвездие» спутников; б) подсистема контроля и управления (ПКУ): следящие станции, контрольная станция и загружающие станции; в) подсистема потребителя (ПП): разнообразные приемники и ПО. ПКА. Оборудование спутника: 1. Радиотехническая аппаратура – для передачи сигналов для измерения расстояний; передачи навигационного сообщения; приема информации от загружающих станций ПКУ; высокостабильный генератор частоты (атомные часы – водородные или цезиевые). 2. Солнечные батареи и аккумулятор. 3. Гироскопическая система ориентировки. 4. Мини - реактивные двигатели. Сигналы, посылаемые со спутника: 1) для измерения расстояний; 2) для передачи навигационного сообщения. Сигнал посылается в цифровой форме (0,1 и т.д.). Дальномерный код представляет собой псевдослучайную последовательность 0 и 1. Он формируется на спутниках и приемниках. ρ=τ∙с – расстояние, измеренное по задержке кодовой последовательности – псевдодальность; τ – сдвиг кодовой последовательности. Принцип измерения расстояния используется в кодовых приемниках. Для передачи кодовой последовательности от спутника к приемнику ее накладывают на несущую частоту. Измерение расстояний по сдвигу фазы несущей частоты выполняется в фазовых приемниках. Существует 2 класса измерений: 1. Кодовые (кодовые приемники); 2. Фазовые (фазовые приемники). Фазовая модуляция – наложение кодового сигнала на несущую частоту. Фазовая модуляция: в момент смены кода с 0 на 1 или наоборот фаза несущего сигнала изменяется на 180º. Кодовый метод – определение псевдодальности от спутника до спутникового приемника по времени прохождения этого пути кодовым сигналом. Фазовый метод – определение дальности от спутника до спутникового приемника по изменению на этом пути фазы несущей волны. Фазовым методом выполняются наиболее точные измерения. Кодовый метод используется для навигации и топографии невысокой точности: от нескольких десятков м до дцм. Псевдодальность – искаженная погрешностями дальность от объекта наблюдения до спутника, отличается от истинной дальности на величину, пропорциональную расхождению шкал времени на спутнике и в приемнике пользователя. Навигационное сообщение: 1) информация о состоянии спутника; 2) поправка часов; 3) бортовые эфемериды, позволяющие вычислить положение спутника в момент наблюдения; 4) альманах – приближенные сведения обо всех спутниках системы. Он нужен для планирования сеансов GPS-наблюдений; 5) прочее. ПКУ. GPS-технологии - орбитальный метод спутниковой геодезии. r=R+ρ, где r – геоцентрические координаты спутника (определяются); R – геоцентрические координаты станции наблюдения; ρ – измерения. Определение r – для прогноза орбит ИСЗ. На определенных станциях: R=r-ρ, где r – прогнозное положение спутника. ПКУ GPS: 1. 1 ведущая станция (Колорадо Спрингс, США) МО: сбор информации и обработка, принятие решений; 2. 5 станций слежения – по всему земному шару, автоматическое отслеживание ρ; 3. 3 загружающие станции – передача информации на борт спутников. Существуют сети слежения без функций управления. Одна из задач: уточнение эфемерид ИСЗ. ПП. 1) антенна; 2) приемник; 3) ПО; 4) прочее. Антенные устройства могут быть встроенные или внешние, двухчастотные (L1, L2) или одночастотные (L1). Для устранения влияния многопутности (многократно отраженный сигнал) используют антенны с металлическим экраном. Фазовый центр антенны – это воображаемая точка, от которой измеряется расстояние. Для исключения погрешности фазового центра антенны ориентируют в одном направлении. Следовательно, для ориентировки антенны указывается положение на север. Измерение высоты антенны – важная операция. Ошибка в высоте антенны практически не выявляется при пост-обработке. Измерение высоты дважды – до и после, в 2 системах измерениях (см и дюймах). Принудительное центрирование выполняется после измерения высоты антенны. Классификация приемных устройств. По способу слежения за сигналами: 1. Одноканальные (последовательного действия); 2. Многоканальные. По виду отлеживаемых спутников: 1) GPS; 2) GPS – ГЛОНАСС; 3) ГЛОНАСС. По видам принимаемых сигналов: 1. кодовые (С/А-код, Р-код); 2. фазовые; 3. кодово-фазовые. По количеству частот: 1) одночастотные (L1); 2) двухчастотные (L1, L2). Наблюдения на двух частотах позволяют исключить ошибку влияния ионосферы. Одночастотные дают хорошую точность только при работе в дифференциальном режиме, на коротких расстояниях (примерно 10 км). По назначению: 1. Навигационные. Точность в лучшем случае 10-15 м, обычно 50-100 м. дифференциальный метод используется при посадке самолетов. 2. Навигационно-топографические. Точность от 10 м до 10 см при расстояниях 50-500 км (дифференциальный режим). 3. Геодезические. Миллиметровая точность для 2 частот при расстояниях несколько тысяч км. Самые дорогие – фазовые двухчастотные. Для получения миллиметровой точности на длинных линиях используется высокоточный приемник, технология наблюдения, ПО и технология обработки, человек.
8.Абсолютный способ определения координат. Понятие псевдодальности и ее уравнение. Тропосферные и ионосферные задержки сигнала от спутников. Засечка по псевдодальностям. Точность абсолютного метода. Геометрические факторы DOP.
ОТВЕТ:
Абсолютный метод. Работает 1 станция – автономное определение координат из решения пространственной линейной засечки по 4 спутникам. Используется в навигации. Сопровождается большим количеством ошибок. Точность координат 5-10 м в лучшем случае, обычно 100-200 м. Навигационное решение по псевдодальности. Пусть tS – время передачи кодовой последовательности со спутника (показания часов спутника). tA – показания часов приемника в момент приема кодовой последовательности. r=(tA-tS) – задержка кодовой последовательности. ρ=c∙r – псевдодальность. Псевдодальность – дальность, вычисляемая по задержке кодовой последовательности. В показания часов приемника и спутника должна включаться поправка часов. tAИСТ=tA+∆tA, tSИСТ=tS+∆tS, где ∆tA, ∆tS – поправки часов приемника и спутника. Уравнение псевдодальности: ρAS =(tАист-tИСТS)∙c-c∙(∆tA-∆tS)+IAS+TAS+dA+dS+dAS+vρ, где (tАист-tИСТS)∙c=rAS - геометрическая (истинная) дальность; IAS - ионосферная задержка; TAS - задержка сигнала в тропосфере; dA, dS - задержка в цепях аппаратуры; dAS - влияние многопутности; vρ - случайные погрешности измерений. Пусть - псевдодальность, исправленная поправка, в мм. (1). ∆tS известна из навигационного сообщения. из основного уравнения спутниковой геодезии. В уравнении (1) 4 неизвестных. xA, yA, zA – геоцентрические координаты пункта; ∆tA – поправка часов приемника. Для решения нужно выражение для rAS привести к линейному виду. Пусть xA0, yA0, zA0 – приближенные координаты пунктов; rAS0 – приближенная дальность. xA=xA0+∆xA; yA=yA0+∆yA; zA=zA0+∆zA, где ∆xA, ∆yA, ∆zA – поправки в приближенные координаты. Линейный вид (1): rAS=rAS0-(eX∙∆xA+eY∙∆yA+eZ∙∆zA), где eX, eY, eZ – направляющие cos геоцентрического вектора пункта. , , . Для каждого пункта составляется система как минимум 4 уравнений (1) в линейном виде. Из решения получаются координаты пункта и поправка часов приемника. Геометрический фактор (DOP – понижение точности). Погрешность определения координат зависит от геометрии расположения спутников. =, где σX, σY, σZ, σ(∆t) – СКП определения координат и поправки часов; σρ – СКП измеренной псевдодальности, GDOP – коэффициент, показывающий, во сколько раз погрешность определения координат и времени превышает погрешность измерения. Чем больше GDOP, тем хуже. GDOP<4 – хорошо; GDOP 5-7 – удовлетворительно; GDOP>7 – плохо. Маска GDOP (DOP) – установка GPS-приемника – ограничения по геометрическому фактору. Варианты GDOP: 1) PDOP – снижение точности местоопределения. , σX, σY, σZ – погрешность определения пространственных координат; σρ – погрешность измерения расстояния до спутника. 2) TDOP – снижение точности определения времени. , σ(∆tA), σ(∆tS) – погрешности часов приемника и спутника. 3) HDOP. , σE, σN – погрешность определения плановых координат. 4) VDOP – снижение точности по высоте. , σН – погрешность определения высоты. В геодезической практике считается допустимым значения PDOP – 8. PDOP<2-3 – отличное наблюдение, PDOP 5-7 – удовлетворительно.